&5 Seagale Software

Microsoft ™ Tape Format Specification

VerSion 100a = documentrev. 1.8

September 15, 2000

derived from Microsoft ™ Tape Format Version 1.0

Document Revision 1.0

Copyright 1997 Seagate Software, Inc.

Revision History

Revision History
Date Description
03-13-98 Changed copyright notice.

10-21-97 Changed File Attributes. Thefile attributes were inadvertently changed to incorrect valuesin a previous version
of the specification. The changesto the file attributes reflect the correct definition.

09-03-97 The Media Catalog Version field of the Start of Set Descriptor Block now refers to the Media Based Catalog
definition for assigned values.

07-10-97 Added clarifications to the Common Block Header fields of the Tape, End of Set, End of Media, and Soft
Filemark Descriptor Blocks.

06-10-97 Added sparse file support and NT specific streams. Add NT OS Specific Information for volumes.
04-11-97 Removed STREAM_CONTINUE reference from Variable Length Stream.
04-02-97 Corrected text in TAPE Attributes field of the Tape Header Descriptor Block.

04-02-97 Corrected NT OS Specific Information (OS ID Number 14, OS Version Number 0). Reserved field was added
to correct alignment problem.

04-02-97 Added NT OS Specific Information (OS ID Number 14, OS Version Number 1).

Print History

Date Version

03-12-98 Version 1.00aRev 1.8
10-21-97 Version 1.00a Rev 1.7
07-10-97 Version 1.00a Rev 1.6
06-10-97 Version 1.00a Rev 1.5
04-10-97 Version 1.00a Rev 1.4
04-02-97 Version 1.00a Rev 1.3
08-20-96 Version 1.00a Rev 1.2

Copyright 1997 Seagate Software, Inc.
Page 2 10/1/98

Table of Contents

Table of Contents

1. INTRODUCTION....crrsesses s

11 WHO SHOULD READ THIS DOCUMENT
12 DOCUMENT LAY OUT .ottt sttt

2. DESIGN GOALS ... b b b bR R R

3. FORMAT DESCRIPTION. ...t i bbb b bbb

3.1 AT A SET S ittt sttt sttt E e £ £ £ £ £ £ £ £ £ £ £ e £ £ £ £ £ £ £ R A A e A £ A e A A £ e e A e e e et et b e et
3.2 FUNDAMENTAL ELEMENT S o.tttrtrtstrtsestsesesesesesesesesesesesesesesesesssesesssesesesssesssesssssesssssssesessssssssssssssssssssnsssssssssnsssssssnsssssnsnsssssnsnsssnsnenens
321 DESCITPLON BIOCKS......cevuteeuereaereserseses sttt s bbbttt
3211 Descriptor Block Anatomy
32111 Common Block Header.
32112 Fixed Lenght DBLK Informationcccccovvernerenen
32113 Operating System Specific Datac.ccceeeruererenecnns
32114 VariableLength DBLK Specific Information
32115 Detaled Descriptor Block Layoutcccccevveeivennne.
3.2.1.2 Defined Descriptor BIOCKS........coviviinneereinieciseieene
32121 TapeHeader DESCIPLOr BIOCK........coii ittt et bbbttt se e b et nnene s
32122 Start of DataSet DESCIIPLOr BIOCK........cciiiiiiiiciiiieiitisei ettt ettt e et e et e s se st ese e b e s esesbeseesensesesrensesenseseas
32123 VolumeDescriptor BlOCK.........coeirirreeniniiieiieneneene
3.2.1.24 Directory Descriptor Block
32125 FileDescriptor BIOCK.......cccoiireeeneienenieerieeeeseee
32126 Corrupt Object Descriptor BlocK..........cccovvvvvieeiiennnnen
32127 Endof Set Pad Descriptor BlOCK.........coccevreiveiiineneen
32128 Endof Set Descriptor BIOCK........cccccoererieiernnenenieenes
32129 Endof TapeMarker Descriptor Block
321210 Soft Filemark Descriptor BlocK.........cccccvvvevieeiiennnne.
322 Data ST AIMS.......ccvreeererrreeiereereere s
323 T =00 T
3.3 IVTEDIA LAY OUT .ooiiiirieesesesesesestsesesesesesesesesese st sese et se e se e e e s e e £ 4 £ s e £ 464 E e e e 444 £ £ £ £ 4 e e £ £ £ A £ e £ £ £ A £ e £ £ e e e e e e £ e e e e e b b s e ne bt ne et eb et st ne b s neneas
331 Media Header
332 Data Sets
3321 Implied PrecedenceWithin @DaIa SELccociiiiiiee ettt et b e et b b et
3322 MediaBased Catalogs
333 BN Of IMEATA... ..ottt sttt
34 ADDRESSING......cuetututueutututseaeststsessstsssesestsssesasssesesesssesesesssasesesesesehesebebeaeRe R e b e Re R e R bR e R e R R e R e Re R e R SRR e R e b e R R e R e R R R e R R AR e R b e R e b e bbb bbb bR bbb tes
341 Physical Block
34.2 Format Logical Block
343 Calculating PhysiCal BIOCK AGOIESSEScucuieerireririersesesseesisessei et sess s sessssess s s sssesssesaees
35 ALIGNMENT oiiieieeierisiee e ses e seseeseesessssssessssssenens
351 Descriptor Blocks
352 Data Streams.................
353 FTTEMAIKS.... oottt bbb bbb s e bbb bbbttt

4. SUPPORT STRUCTURES.......oc i b s b bbb 27

AL UINTB bbb bbb bbb b bbb 27
4.2 MTF_TAPE_ADDRESS ... bbb bbb b b b bbb 27
A3 MTE _DATE _TIME. bbb b b b bbb 28

5. DESCRIPTOR BLOCKS ...t ssese s sesssse e ses s esessse s s st ssessssssnesssssessesesssssseneassesnesassessons 29

5.1 COMMON BLOCK HEADER......csuuetstteuseressisessesessssssssssssesssssssssssssssssssssssssssssssessssassssssssssssesssssssssesssssssssasssssssssassesnsessssesssssssessssesnsees 29
511 DBLK SPECifiC AIITDULE BITS.......coicrieeirieiieti et s 33
512 StringsWithin DBLKs

5.2 DBLK STRUCTURES......cstuttrtuetreeeesteeestsessesessssessssesssssssessssssssssssssssssassssassssssesssssssssssssssssssssssssssesstsssssssssssassssassesassesassesssssssssssssssssees
521 Tape Header Descriptor BIOCK (MTF_TAPE)ccciisrisssisiss sttt sss s sss st sssssssssssssssssssssssssssnenes
522 Sart of Data Set Descriptor Block (MTF_SSET)
523 Volume DesCriptor BIOCK (MTF_VOLB) ..ot sssssasssssssssssssss st ssssssssessssssssessssssssesessssssessssssssesssnns

Copyright 1997 Seagate Software, Inc.
9/15/00 Page 3

Revision History

524 Directory Descriptor BIOCK (MTF _DIRB) ..ottt e st seses
525 File Descriptor Block (MTF_FILE)ccccovvvvirererereene
5.2.6 Corrupt Object Descriptor Block (MTF_CFIL)
.27 End of Set Pad Descriptor Block (MTF_ESPB)
5.2.8 End of Data Set Descriptor Block (MTF_ESET)...............
529 End of Tape Marker Descriptor Block (MTF_EOTM)
5.2.10 Soft Filemark Descriptor BIOCK (MTF_SFIMB) ..o tsesssssssssssssss s ssesssssssssssssssssssssssessssssssssssssssssnenes
6. DATA STREAMSottt e e R E e E e R SRR R AR e e et e e r AR n e rer s 59
6.1 STREAM HEADER (MTF_STREAM_HDR)
6.2 STREAM DATA ..ot
6.2.1 Platform Independent Stream Dataccveeeereeeenereeernenerneernenns
6.2.1.1 Standard Data Stream (STANDARD_DATA_STREAM) ...ttt e sttt 62
6.2.1.2 Directory Name In Stream (PATH_NAME_STREAM)........ciiiiiiiee ettt sttt sttt st sa s st s st sae s teneabesnenis 62
6.2.1.3 FileNameIn Stream (FILE_NAME_STREAM)
6.2.1.4 Checksum Stream (CHECKSUM_STREAM)........coooemrvuerrrerrenne.
6.2.1.5 Corrupt Stream (CORRUPT_STREAM)ccccceiiinininireenenee
6.2.1.6 Pad Stream (PAD_STREAM)....oouoiuiieeeeeseeeeeseeeeeesecesssseesseens
6.2.1.7 Sparse Stream (SPARSE_STREAM).......ccooouemrvemmeemnrrnnrrnssenssen.
6.2.2 WINdows NT SIream Dataocoveeeerereeererenesenneseseeesesesaeesesenes
6.22.1 WindowsNT Alternate Data (NTFS_ALT_STREAM)......oo ittt sttt s ae st s ene e be e
6.2.2.2 WindowsNT Extended Attribute Data (NTFS_EA_STREAM)c.coiiiieicriee ettt st s
6.2.2.3 WindowsNT Security Data (NT_SECURITY_STREAM)............)
6.2.24 Windows NT Encrypted Data (NT_ENCRY PTED_STREAM).....
6.225 Windows NT QuotaData (NT_QUOTA_STREAM)......cccceovunee
6.2.2.6 Windows NT Property Data (NT_PROPERTY_STREAM)...........
6.2.27 WindowsNT Reparse Data(NT_REPARSE_STREAM)..............
6.2.28 WindowsNT Object ID Data(NT_OBJECT_ID_STREAM)........
6.2.3 Windows 95 SIream Datacccceeereeenisissesseses s
6.2.3.1 Windows 95 Registry Stream (WIN95_REGISTRY_STREAM)
6.24 NetWare SIream Data ... ssssseseseens
6.24.1 NetWare Trustee Information (NETWARE_386_TRUSTEE_STREAM)....
6.242 NetWare Bindery (NETWARE_BINDERY _STREAM).......ovvvveverreeeneennnn.
6.24.3 NetWare SMS Data Format (NETWARE_SMS DATA_STREAM)...........
6.2.5 (@0 S (== Ty a1 - - TR
6.2.6 Macintosh Stream Data...........
6.2.6.1 Macintosh Resource Stream (MAC RESOURCE_STREAM)
6.26.2 Macintosh Privilege Stream (MAC_PRIVILEGE_STREAM)
6.2.6.3 Macintosh Info Stream (MAC_INFO_STREAM).....cccccoeinirennnn

6.3 VARIABLE LENGTH STREAMS

6.4 DATA COMPRESSION.....cruiuremterenireesineesssesssessessssessssesssseassseseens
6.4.1 Compression Frame Header (MTF_CIMP_HDR)ccirersecessesssetsesssss s sssstsssnses
6.5 DATA ENCRYPTION ..eiiuiuiereucestueeteesseessstsesessesesseaessessssesssssssesssstssestssssssessssesasssssssssasssssesssasssssssssssssssnssssassssatsssssesssessesssssssssessssees
651 Encryption Frame Header (MTF_ENC _HDR)ccciineneeineeissiesss s ssssssessssees
7. MEDIA BASED CATALOG ... crrrirerisessssessssessseesstssssssessassessssesssssssessssssssssssssessssessssesnssessssessssases
25 R © Vi 11 210 N = 5 TP

7.2 STATUSBITS.
7.3 TYPELMBC....iene.

731

732
7321
7.3.2.2
7.3.2.3

PRYSICAI LAYOUL......c.ceiiiieiieeccsesssesssssssssssssssss e s se s sssa s s s sassss e e sssssasasssesssasesssssasssssssesssssssasssssssasssssasssssnsnsanes
L LT =Tt o) VA I L= - 1 TR
FDD Physical Layout..............
FDD Common Header
DD ENEFIES ..ottt t ettt e e st et e e e e e seeaeee e e eheeEemeeE 22 eaesE2meeReHEemeeE e e eReeEemeebe e eaeeEeneebe e eReebeneeReaseseebeneeresaneas

73231 FDD VolumeEntry (MTF_FDD_VOLB) ...ttt

7.3.232 FDD Directory Entry (MTF_FDD_DIRB)

7.3.233 FDD File Entry (MTF_FDD_FILE) ...ovveeeeeeerererereerreeeereeeneone
7.323.4 Endof FDD ENtry (MTF_FDD_FEND)oouiiiiiieieeieieiese sttt ettt sttt be sttt e bbb e enas
733 =/ o OO RRRTRRRRRRR
7331 SetMapPhysical Layout..........ccceveneeee
7332 SetMapHeader (MTF_SM_HDR)

Page 4

Copyright 1997 Seagate Software, Inc.
10/1/98

Table of Contents

7333 SetMap ENtry (MTF_SM_ENTRY) eoooooeeeoeeeeeeeeeeeeeeeeeeseessseeses e seesesseseseesesessssssesessesessesseseseessseseesssss s ssssessseses s sssssssessees 84
7.3.3.4 Volume Entry
7.3.35 Endof Medialssues

TA TYPE 2MBC... ettt 8RR AR

74.1 SetMap ...

742 File/Directory Detail

743 ENG Of MEBAIA ISSUESceeereretcet sttt sttt
8. END OF MEDIA PROCESSING......ccoienentieitieitsee e sess sttt s s sttt naes 91
APPENDIX Aot OPERATING SYSTEM SPECIFIC DATA
APPENDIX B ..ottt s PASSWORD ENCRYPTION ALGORITHM
APPENDIX C.e e s s DATA COMPRESSION ALGORITHM
APPENDIX Dbt bbb s IMPLEMENTATION ISSUES
APPENDIX En bbb bbb OPTICAL MEDIA FRAMEWORK

Copyright 1997 Seagate Software, Inc.
9/15/00 Page 5

Table of Contents

FIGURE 1.
FIGURE 2.
FIGURE 3.
FIGURE 4.
FIGURE 5.
FIGURE 6.
FIGURE 7.
FIGURE 8.
FIGURE 9.

FIGURE 10.
FIGURE 11.
FIGURE 12.
FIGURE 13.
FIGURE 14.
FIGURE 15.
FIGURE 16.
FIGURE 17.
FIGURE 18.
FIGURE 19.
FIGURE 20.
FIGURE 21.
FIGURE 22.
FIGURE 23.
FIGURE 24.
FIGURE 25.
FIGURE 26.
FIGURE 27.
FIGURE 28.
FIGURE 29.
FIGURE 30.
FIGURE 31.

Table of Figures

IMEEDIA FAMILY ottt 8 4816884818884 8 18885 H A8 £ 488 A8 48 A e A £ 48 A E e E £ A eE R e ne e e e b s ne et s e neneen s e e
DESCRIPTOR BLOCK LAYOUT

DETAILED DESCRIPTOR BLOCK
DATA STREAMS......coovereereereenerenrenenns

IVTEDIA LAY OUT .otiieeierreeeerersesesssessesesssesseessse e sesesessesessses e sss et s seseseeeass s e s ses s e e ses e e ne s s b e ne s e R e ee s R e e s AR e s e r s

IMEEDIA HEADER ...ttt ittt sttt sttt £ £ e £ £ £ £ £ e £ £ e e e b e e e et e ne et e e nt et st e

DATA SET oo

IMPLIED PRECEDENCE

THE EFFECT OF SPANNING PHYSICAL BLOCK ADDRESS AND FORMAT LOGICAL ADDRESSES
PHYSICAL BLOCK AND FORMAT LOGICAL BLOCK BOUNDARIES
CALCULATING PHYSICAL BLOCK ADDRESSES.......cccoeueteueuererereneeerenenns
STREAM ALIGNMENT FACTOR.......cctetrereeneerereneeeees
WITH END OF SET PAD DESCRIPTOR BLOCK
WITHOUT END OF SET PAD DESCRIPTOR BLOCK
BITWISE ORGANIZATION OFMTF_DATE_TIME
EXAMPLE DATA AND TIME IN MTF_DATE_TIME FORMAT ...ttt
SOFT FILEMARK BLOCK LAYOUT
DATA STREAMS.....coevrirerririereeeinienenans
CHECKSUM STREAM ...uutuiuiutitieeniitieeessseesesssssssss e ss e ss et e et s s et ssssssssssssssssssssssssssasssssssssnsssssnsnsstssasssssssnsssssenssnsnenes
WINDOWS 95 REGISTRY STREAM
WINDOWS 95 REGISTRY STREAM
NETWARE BINDERY STREAM.........
VARIABLE LENGTH STREAMS......coiiiirerirereserisesesesesesesssesesesssesesesssssesssssssesens
PHYSICAL LAYOUT OF TYPE 1 MBC FDD AND SET MAP STREAMS
PHYSICAL LAYOUT OF TYPE2 MBC SET MAPAND FDD STREAMS
TYPE 2MBC SET MAP EXAMPLE
TYPE 2 MBC FDD EXAMPLE ...ttt b b b b bbb
TYPE 2 MBEC SPANNING.....cucucuetresteeteriesesssessesesesessesesssessssesssssessesssessssesssssessesssssessssssssessssssssessssesssesassassessssesssesessssssssesssnssesesnenses
OS ID AND OS VERSION MATRIX
OPTICAL MEDIA FRAMEWORKcetitrtrtrtstrtsesestsesessesesssssesssssesesssesesesesesesesssesetesesesesesesesesesesssesesesess
MULTIPLE OPTICAL FILEMARK TABLES.....costitrtrtrtrtstrtsesesesesesesesesesesesesesesesesesesesssesesssssesessssssssssssestsssssssessssssssssssssssssssssnsnsns

Copyright 1997 Seagate Software, Inc.

9/15/00

Page 7

Introduction

1. Introduction

This document describes the logical dataformat used in Microsoft Tape Format (MTF). Mediatypeswhich can use this data
format include magnetic tapes of many types (QIC, 4mm DAT, 8mm, DLT, etc.), optical disks (Power Drive, CD-ROM),
magnetic disks, etc. MTF isused while writing and reading data to and from removabl e storage devices during storage
management or data protection operations such as data transfers, copies, backup and restore.

Throughout this document, the term “tape” is used when referring to the removable media. Tapes are shown in most of the
diagrams depicting the physical layout of data. Even some of the data structures include the name“ TAPE”. Keep in mind that
disk based mediais equally suitable for MTF and tape is used only as an example, and because this specification originated as
atape format specification before optical disk media became a viable solution for storage management.

Thisformat is compatible with the dataformat used in the NT Backup applet program that comes bundled with Microsoft®
Windows NT™ version 3.X and 4.X.

1.1 Who Should Read This Document

This document should be read by anyone who needs to understand or implement the Microsoft Tape Format. It isexpected that
the reader have a general knowledge of storage management operations, tape drives and file systems. Knowledge of tape data
formatsis helpful but not required.

1.2 Document Layout

This document is Revision 1.00a of the Microsoft Tape Format Specification. It isarefinement of the Microsoft Tape Format
Version 1.0 Specification. While the design of MTF Version 1.00awill remain unchanged, future updates and revisions to this
document will continue to be madein an effort to describe the specification as clearly and accurately as possible.

Section1l Introduction, provides an introduction to the Microsoft Tape Format (MTF).
Section2 Design Goals, describing the capabilitiesinherentinthe MTF.

Section3 Format Description, providesabroad look at the organization of MTF, covering material such as Data Sets, the
fundamental building blocks of MTF called “ Descriptor Blocks”, the use of data streams, the Media Based
Catalog, filemarks, the physical and logical characteristics of the format, and spanning Data Sets across multiple
media (tapes or disks).

Section4 Support Structures, provides detailed definition of support structures used throughout MTF.
Section5 Descriptor Blocks provides detailed definition of Descriptor Blocks.

Section6 Data Streams, provides detailed definitions of Data Streams.

Section7 Media Based Catalog, provides detailed definitions of Type 1 and Type 2 Media Based Catal ogs.
Section8 End Of Media Processing, provides a detailed description of End Of Media Processing.

The Appendices, include detailed information on Operating System Specific Data, Password Encryption Algorithm, Data
Compression Algorithm, and Implementation I ssues.

Copyright 1997 Seagate Software, Inc.
9/15/00 Page 9

Design Goals

2. Design Goals

This sections describes the design goals employed in the devel opment of the Microsoft Tape Format.

Fast retrieval of stored data.

L ow processing overhead to ensure optimum performance on low-end systems and devices. Thisisaccomplished by
careful design of the control structuresto reduce the amount of interpretation the application software needs to do.

Allows applications to ignore information on the mediathat is not understood by the target operating system. This
feature makes it possible to restore data across platforms (e.g., data backed up on an Apple Macintosh system may be
restored to a DOS system, ignoring the resource fork which DOS does not understand).

The ability to extend the format for specialized processing by adding new DBLK s and data streams without rendering
the format unreadable by other applications. Applications which are not aware of the extensions can easily skip over
them, both increasing backward/forward compatibility, and allowing the restoration of datafrom media created by
another vendor's application.

Data structures are arranged so that 32-bit values are aligned on 32-bit boundaries, and 16-bit values are aligned on 16-
bit boundaries. Thisisimportant because some processors require this alignment to run at maximum efficiency. By
making sure this alignment isfollowed it is easier for the implementor to map these structures directly onto data buffers.

Reliable end of media handling.

The ability to restore any remaining portion of a Data Set which spans multiple media (tapes or disks) in the event one
or more mediais lost or damaged.

Format support to deal with corrupt files encountered on the primary storage volume that is being written to removable
media

Support for unlimited directory path and file name lengths.
64-bit file data sizes.

Allows the application to take full advantage of a drive's capabilities (e.g., Block Seek, Fast Seek to End of Data, etc.)
without hindering less capable drives.

Copyright 1997 Seagate Software, Inc.

9/15/00

Page 11

Format Description

3. Format Description

This section presents an overview of the Microsoft Tape Format (MTF). It discusses the fundamental elementsthat are usedin
data management operations and how they are organized. Thisinformation provides the foundation from which the rest the
this document will build.

3.1 Data Sets

When a collection of objects are written to removabl e storage media (tape, optical disk, etc.) during a data management
operation such as a backup, transfer or copy, it is stored asaData Set. A medium may contain more than one Data Set and a
Data Set may span from one medium to another. The diagrams that follow use tapes as the medium type. Theterm Media
Family refersto a collection of one or more Data Sets appended together and spanning one or more individual tapes or media.
The diagram below is a simplified picture of how Data Sets are placed on one or more media.

Tape 1 Tape 2
.@ /S G)‘ @ .O‘
[3 [3
\
Data Set Data Set Data Set Data Set Data Set Data Set
#1 #2 #3 #3 (continued) #4 #'n'

T

Figurel. Media Family

3.2 Fundamental Elements

The fundamental elements of MTF areDescriptor Blocks, Data Streams, and Filemarks Descriptor Blocks are used for
format control, Data Streams are associated with Descriptor Blocks to provide data encapsulation and alignment, and
filemarks are used for logical separation and fast positioning within a media

3.2.1 Descriptor Blocks

Descriptor Blocks are the primary building blocks on which MTF is founded. Throughout this document a Descriptor Block
will be abbreviated to DBLK. MTF defines many DBLK's each of which is uniquely suited for the role it was defined.

Copyright 1997 Seagate Software, Inc.
9/15/00 Page 13

Format Description

3.2.1.1 Descriptor Block Anatomy

A DBLK isessentially avariable length block of datathat is divided into four parts. Thefirst isthe Common Block Header
which isfixed length structure that is common to all DBLKs. The second isthe Fixed Length DBLK Information that is
specific to the type of DBLK being defined. The third isthe Operating System Specific Data that is defined based on the
type of DBLK and Operating System. The fourth and last is the Variable Length DBLK Specific Information which
contains variable length that cannot be stored with the Fixed Length DBLK Information. Of the four parts listed, only the
Common Block Header is required.

Common Block Header Fixed Length DBLK Information | Operating System Specific Variable Length DBLK Specific
(required) (optional) Data (optional) Information (optional)
AN)
N
DBLK

Figure2. Descriptor Block Layout

32111 Common Block Header
The Common Block Header is at the beginning of each DBLK and includes general information about the DBLK. The

Common Block Header includes alink to the Operating System Specific Data section. For a detailed description of the
Common Block Header, see the Chapter on Descriptor Blocks

32112 Fixed Lenght DBLK Information

The Fixed Length DBLK Information follows the Common Block Header and contains information that is unique to the
type of DBLK defined. The Fixed Length DBLK Information is afixed length for each DBLK type and may contain
links into the Variable Length DBLK Specific Information section. The Fixed Length DBLK Information is optional
and may be omitted if the defined DBLK type contains no unique information. For a detailed description of the defined
Descriptor Blocks, see the Chapter on Descriptor Blocks

32.1.1.3 Operating System Specific Data

The Operating System Specific Data may optionally contain variable length information that is specific to the type of
DBLK and Operating System. For a detailed description of Operating System Specific Data, see Appendix A.

3.21.14 Variable Length DBLK Specific Information

The Variable Length DBLK Specific Information may optionally contain variable length information that is specific to
the type of DBLK. Theinformation stored in the Variable Length DBLK Specific Information is referenced through
linksin the Fixed Length DBLK Information.

Copyright 1997 Seagate Software, Inc.
Page 14 10/1/98

Format Description

32115 Detailed Descriptor Block Layout

The following figure shows a detailed layout of a generic Descriptor Block. The MTF Tape Address sub-structurein
the Common Block Header is the link to the Operating System Specific Information section. The MTF Tape Address
sub-structure in the Fixed Length DBLK Specific Information is the link(s) to the Variable Length DBLK Specific

Information section.

Offset to start of OS
specific area

Offsets to start of strings

Common Block Header (required)

MTF Tape Address

\.. fixed minimum
/ DBLK length

% 4bytes

Fixed Lenght DBLK Specific
Information (optional)

MTF Tape Address

MTF Tape Address

- fixed length
7 4 bytes f> 9

} 4 bytes

Operating System Specific Data
(optionalgJ

o
5

L

:} variable length

j

Variable Length DBLK Specific
Information (optional)

field of length 'X'

-
et

} X bytes

field of 'Y"

i
¢ Y bytes

P PO

i

variable length

\

One Alignment
Factor maximum
length

Figure 3. Detailed Descriptor Block

3.2.1.2 Defined Descriptor Blocks

MTF defines a number of Descriptor Blocks which are used to control the placement of datain a data management
operation. Thefollowing isageneral overview the DBLKs currently defined for MTF. New DBLKswill be defined by the
MTF Review Committee in the future as the need arises.

32121 Tape Header Descriptor Block
The Tape Header Descriptor Block (MTF_TAPE DBLK) islocated at the front of each media. The MTF_TAPE
DBLK describes the contents of the media. This information includes a unique identifier to indicate the Media Family
to which the media belongs, the sequence number of the mediain the Media Family, and a name string for user
identification, aswell as other information needed to interpret the data on the media. Information about the presence,
and type of Media Based Catalogsis available here.

Copyright 1997 Seagate Software, Inc.

9/15/00

Page 15

Format Description

Note: Despite the name of thisDBLK, it isused on tape, optical disk, or other types of removable storage media.

32122 Start of Data Set Descriptor Block

The Start of Data Set Descriptor Block (MTF_SSET DBLK) islocated at the front of each Data Set. It contains
information that describes the Data Set such as the name, a user description, the password, a sequence number, the date
and time that data began being written to media, and the type of data management operation (transfer, copy, normal
backup, differential backup, etc.) used to create the Data Set.

3.21.23 Volume Descriptor Block

The Volume Descriptor Block (MTF_VOLB DBLK) describes a volume which is being written to the media. This
includes the device name, volume name, machine name and media write date.

32.1.24 Directory Descriptor Block

The Directory Descriptor Block (MTF_DIRB DBLK) describes the full path of the directory being written to media.
Thisincludes the directory name, the directory creation date and time, the last modification date, backup date, last
access date and directory attributes such asread only.

3.21.25 File Descriptor Block

The File Descriptor Block (MTF_FILE DBLK) describes the file which is being written to media and is followed by the
actual filedata. The MTF_FILE DBLK contains information such as the file name, file size, the date and time thefile
was created, |ast accessed and last modified, and file attributes such as read only, hidden, system, etc.

32.1.26 Corrupt Object Descriptor Block

It is often the case that a DBLK has already been written when it is discovered that not all of its associated data can be
read due to disk corruption, network failure, etc. When this condition occurs, the portions of the stream that could not
be read are padded to maintain the correct stream size.

A Corrupt Object Descriptor Block (MTF_CFIL DBLK) isthen written to indicate that the data associated with the
previous DBLK iscorrupt. The MTF_CFIL DBLK containsfields for the stream number and the byte offset in that
stream where the corruption began.

3.21.2.7 End of Set Pad Descriptor Block

The End of Set Pad Descriptor Block (MTF_ESPB DBLK) isonly used when the physical block size of the deviceis
larger than the format logical block size. The MTF_ESPB DBLK isan optional method used at the end of a Data Set to
fill the gap to the next physical block boundary. Alternately, the SPAD associated with the last DBLK can be extended
to the next physical block boundary.

Note: Format Logical Block is defined in section 3.7.

3.21.28 End of Set Descriptor Block

All Data Sets end with the End of Set Descriptor Block (MTF_ESET DBLK). Sinceit is not necessarily known how
many objects will be written in a Data Set when the operation begins, MTF_ESET serves as an indicator to show that
the preceding filemark indicates the end of the Data Set. It also containsinformation which isn't available until the data
management operation is complete, such as the number of corrupt objects written to the media.

3.21.29 End of Tape Marker Descriptor Block

The End of Tape Marker Descriptor Block (MTF_EOTM DBLK) isthelast DBLK written to a"full* media. Aswith
the MTF_ESET, the MTF_EOTM serves primarily as an indicator, but does contain information necessary for fast
access of Media Based Catal ogs.

Copyright 1997 Seagate Software, Inc.
Page 16 10/1/98

Format Description

321210 Soft Filemark Descriptor Block
The Soft Filemark Descriptor Block (MTF_SFMB DBLK) is used to emulate filemarks when hardware support is not
available.

3.2.2 Data Streams

Data Streams are used to encapsulate data. This encapsulated data can then be associated with a Descriptor Block. A Data
Stream is comprised of a Stream Header followed by the Steam Data. A field within the Stream Header defines the type of
Stream Data that will follow. Only one type of Stream Data can be encapsulated by a Stream Header. The segregation of
different Stream Data types provides a means of separating platform independent data from platform specific data. For a
detailed description, see the section on Data Streams.

4 byte Stream 4 byte Stream 4 byte Stream
Alignment Alignment Alignment
\ 3 r \
Checksum
EIEEK a Stream Data a for NTEA S Stream Data
Stream Data
\ / \
NTEA CSUM STAN
Stream Header Stream Header Stream Header
STREAM_CHECKSUMED STREAM_CHECKSUMED

Figure4. Data Streams

3.2.3 Filemarks

Filemarks are used for logical separation and fast positioning within amedia. If the device being used does not provide
filemarks, the filemarks must be emulated by adevice driver or by use of the Soft Filemark Descriptor Block. The placement
of filemarksisdiscussed in the next section Media Layout.

Copyright 1997 Seagate Software, Inc.
9/15/00 Page 17

Format Description

3.3 Media Layout

MTF defines that a media be divided into a Media Header, one or more Data Sets, and End of Media. The Media Header is
used to uniquely identify the media. The Data Set is used to store a collection of Descriptor Blocks and Data Streams used in a
data management operation. The End of Mediais used to span from one mediato the next.

Media Header |Data Set 1 Data Set 2 $$ Data Set N End of Media

Figure5. Media Layout

3.3.1 Media Header

The Media Header is used to uniquely identify the media. A MediaHeader is comprised of a Tape Header Descriptor Block
(MTF_TAPE DBLK), SPAD Data Stream, and filemark. The SPAD Data Stream is used to fill the gap between the
MTF_TAPE DBLK and filemark.

Media Header |Data Set 1 Data Set 2 $$ Data Set N End of Media
|
4 byte Stream
BA, Alignment PBA,
TAPE S FILE
DBLK H Stream Data MARK
)
SPAD
Stream Header

~
Media Header

Figure6. Media Header

Copyright 1997 Seagate Software, Inc.
Page 18 10/1/98

Format Description

3.3.2 Data Sets

A Data Set is comprised of a Start Of Data Set Descriptor Block (MTF_SSET DBLK), the Descriptor Blocks used for the data
management operation, afilemark, End Of Set Descriptor Block (MTF_ESET DBLK), and filemark. Typical Descriptor
Blocks used for a data management operation include the Volume, Directory, and File Descriptor Blocks. The End Of Set
Descriptor may optionally have Media Based Catalog Data Streams associated with it.

Media Header |Data Set 1 Data Set 2

$$ Data Set N End of Media

4 byte Stream

Alignment
|\
SSET |[S . FILE ESET |Media Based Catalod FILE
DBLK IH Stream Data Descriptor Blocks ** MARK DBLK | (Optional) TMARK
i A
SPAD
{ Stream Header
V J
Data Set

Figure7. Data Set

3.3.2.1 Implied Precedence within a Data Set

It isimportant to understand that MTF is alinear format and uses| mplied Precedence to preserve the parent child
relationship between Descriptor Blocks. That is, the parent child relationship isimplied in the definition of the Descriptor
Block and cannot be determined when an unknown Descriptor Block is encountered.

Tablel1l. Implied Precedence within a Data Set

Parent

Child

MTF_SSET

MTF_VOLB

MTF_VOLB | MTF_SSET

MTF_DIRB

MTF_DIRB MTF_VOLB

MTF_FILE

MTF_FILE

Copyright 1997 Seagate Software, Inc.
9/15/00

Page 19

Format Description

Take for example the Volume Descriptor Block. Once the Volume Descriptor Block iswritten to a Data Set, all Directory
and File Descriptor Blocks that follow are children of that VVolume Descriptor Block until another V olume Descriptor
Block iswritten. The sameis also true of the Directory Descriptor Block. When a Directory Descriptor Block iswritten to
aData Set, all File Descriptor Blocks that follow are children of that Directory Descriptor Block until another Directory
Descriptor Block is written.

Both MTF_FILE DBLKs are children of
the previous MTF_DIRB DBLK

DBLK | H|Data DBLK | H|Data H|Data |DBLK [H|Data H|Data |DBLK
\ / / / / ! \

SPAD STAN SPAD STAN SPAD
Stream Header ~ Stream Header Stream Header Stream Header Stream Header

. i DIRB [|S|Stream |FILE [|S|Stream || S|Stream |FILE |S|Stream |S|Stream DIRBi}

Figure8. Implied Precedence

3.3.2.2 Media Based Catalogs

The Media Based Catal og provides a quick method of locating Data Sets and specific objects within each Data Set. The
abbreviation “MBC” is used throughout this specification to refer to Media Based Catalog. The MBC consists of two parts,
aFile/Directory Detail that provides specific information about the contents of a single Data Set, and the Set Map which
provides cumulative information about all the Data Sets on a Media Family. Both the File/Directory Detail and the Set

Map are stored as data streams associated with the MTF_ESET. For adetailed description see the section on Media Based
Catalogs

A Set Map may exist on tape without a File/Directory Detail. However, aFile/Directory Detail can only exist if a Set Map
isalso present. The File/Directory Detail and Set Map must be data streams associated with asingle MTF_ESET.

The Microsoft Tape Format has been designed not to require the use of Media Based Catal ogs for access to objects stored
on removable media. However, the use of the MBC is strongly recommended because it provides much faster access to
information about objects on the media and to the actual data objects themselves.

3.3.3 End of Media

When the End of Media (tape or disk) is reached while writing a Data Set, afilemark is placed on the medium followed by an
MTF_EOTM DBLK and another filemark. The write operation continues on the next medium which is called a*“continuation”
medium. The process of continuing the Data Set from one medium to another is called “spanning”.

The figure below is an example of a Data Set containing directories and files that spans from one tape to another in the middle
of adata stream followingaMTF_FILE DBLK. The span point occurs at Format Logical Address 154 in the data stream for
FILE“R”. You can seethat the data stream continues at FLA 154 on the next tape. Only the unwritten portion of the data
stream is placed on the next medium. In this example, the physical block size is 1024 bytes, filemarks are the same length as
the physical block size, and the Format Logical Block sizeis 512 bytes.

Continuation DBLKs are necessary on the continuation medium. The MTF_SSET, MTF_VOLB, MTF_DIRB, and

MTF_FILE DBLKsthat describe the spanning set, volume and directory and file respectively must be repeated on the
continuation tape. Notice that the Physical Block Addresses do not continue on the second tape like the Format Logical
Addressesdo. Thisisbecause PBAs are controlled by the tape device which knows nothing of spanning, whereas Format
Logical Addresses are controlled by MTF and are continuous for an entire Data Set regardless of the number of tapes required
to hold it. The Format Logical Address of the continuation DBLK s must be cal culated using the Format Logical Address at the
span point and the number of continuation DBLK's that precede the continuation span point. For example, the FLA of the
MTF_VOLB DBLK (151) on the continuation tape is calculated by subtracting 3 from the FLA of the continuation span point
(154).

Copyright 1997 Seagate Software, Inc.
Page 20 10/1/98

Format Description

A P?A 8732

PBA

8733

8808

PBA

8809

PBA

8810

PBA 8811

DIRB A DIRB B FILE A addtional | [FLE RJFILE R EOTM
} FL DBLK DBLK DBLK aligndmenl DBLK | Data Stream FILE MARK DBLK FILE MARK
Indexes
I i i i
FLB, FLB, FLB, FLB; FLB,;, FLB, FLB, FLB,;, FLB, FLB
PBA PBA , PBA , PBA . PBA ¢ PlBA ;
\
TAPE voLs FLE R FLE R FLE S|FLE S
DBLK FILE MARK DBLK DBLK DATASTREAM DBLK | DATASTREAM
(cont) (cont) (cont)
i i i |
FLB, FLB, FLB, FLB o5 FLB, g6 FLB,s, FLB,g, FLB,g,

151

153

154

Figure9. The Effect of Spanning Physical Block Address and Format L ogical Addresses

The above exampleis just one way in which an End Of Media condition can occur. Appendix Jis devoted to the different End
Of Media conditions and how spanning ishandled in MTF. There are actually two methods of handling the continuation
DBLKs. Thefirst method, which is shown in the above example, usesasingle MTF_DIRB DBLK (DIRB C) prior to the span
point. Thisisallowed because the path information with the nested directory structure is contained in every MTF_DIRB
DBLK. The second method, not shown here, includes every MTF_DIRB DBLK (DIRB A, DIRB B, DIRB C) describing each

element of the path at the span point.

Copyright 1997 Seagate Software, Inc.

9/15/00

Page 21

Format Description

3.4 Addressing

This section describes what a physical block is and how physical block addressing is performed as well asformat logical block
addressing and how to calculate a physical block address of a given Descriptor Block in a Data Set.

3.4.1 Physical Block

Theterm "physical block” refersto the minimum number of bytes which can be written to the removable storage medium by
the device. Thesize of aphysical block varies from one device to the next. Many tape devices now offer the ability to request
the current position of the tape in terms of aphysical block offset. Werefer to thispositionin MTF asa Physical Block

Address, abbreviated PBA. These devices also have the ability to seek to agiven PBA at a much faster rate than older tape
devices which required rewinding and reading out to the same position.

MTF requires the ability to calculate the PBA of agiven object in aData Set given the PBA of the start of the Data Set, and the
data offset of the object. In other words, PBAs between filemarks must be sequential. It isalso required that all devicedrivers
for agiven device report the same PBA for any given location on the media. Given aPBA, all device drivers must seek to the
same location on the media. Note that many devices do not directly support calculating PBAsin thismanner. Asaresult, itis
up to the software and/or device driver to ensure this. Refer to Appendix L for details on how thisis accomplished on a
specific device.

When a device writes a physical block to media, the physical block typically contains header information, datafrom the host
computer, CRC information and ECC. The header, CRC and ECC information are automatically added by the device. The
Microsoft Tape Format is only concerned with the data portion of the physical block that is written by the device and its
physical address (PBA). When we talk about a Physical Block Address, we are referring to the address used by the tape device
to identify and locate the data contained within that physical block.

3.4.2 Format Logical Block

If the PBA of every DBLK written to tape were stored in acatalog on primary disk, it would greatly reduce the time required to
restore selected files from various places on the storage media. However, this method poses a problem: it would require all
DBLKsto be aligned on physical block boundaries, resulting in a significant waste of space. On adevice with aphysical block
size of eight kilobytes, several kilobytes of wasted space would result for each DBLK written. It would also require requesting
this position prior to writing each object which would increase the time required to perform the write operation. For this
reason, the concept of aFormat Logical Block isintroduced. Figure 3-6 shows several DBLK s belonging to the Data Set

located within just two physical blocks with little wasted space. Thisis possible through the use of a Format Logical Block.

The MTF_SSET DBLK at the beginning of every Data Set always follows afilemark and thus is always aligned on a physical
block boundary. Its PBA is obtained from the tape device driver and stored within the MTF_SSET DBLK. All DBLKs must
be aligned on a Format Logical Block boundary. The size of the Format Logical Block can be 512 or 1024 bytesin MTF Ver.
1.00a. The Format Logical Block size that will be used for a specific medium iswritten in the MTF_TAPE DBLK at the
beginning of the medium and must be consistent for the entire length of the medium and across an entire Data Set if it spans
media. For example, if 512 bytesis chosen for atape and the Data Set spans to another tape, the Format Logical Block size on
the next tape must also be 512 bytes, not 1024 bytes.

Thelocation of aspecific DBLK can be found within a Data Set by using an address for the Format Logical Block that the
DBLK startson. Thisaddressis called the Format Logical Address and is abbreviated FLA. The Format Logical Addressis
the number of Format Logical Blocks from the start of the Data Set and can be thought of as a zero-based index into a Data Set.
The Format Logical Addressisa64-bit unsigned integer. Every DBLK found in a Data Set has aunique FLA that isstored in
the Common Block Header structure of the DBLK itself and in the File/Directory Detail portion of the Media Based Catal og.
When restoring an object (volume, directory, or file), the FLA can be used in conjunction with the PBA of the MTF_SSET to
calculate and seek to the exact location of the desired object's DBLK. For example, the MTF_VOLB DBLK in Figure 3-6 can
be precisely located using the PBA of “y” and the FLA of “1”.

The flexibility within MTF to determine the Format Logical Block size allows vendors to choose a size that optimizes the
speed or storage capacity for the particular storage device being used, and the type of data being written. The smaller Format
Logical Block of 512 bytes results in less wasted space on the media as opposed to the 1024 bytes Format Logical Block.

Copyright 1997 Seagate Software, Inc.
Page 22 10/1/98

Format Description

Physical Block Addresses (PBA) Format Logical Address
PBA x PBA x+1 PBA'y FLAL FLA2 FLA3 PBAy+1l FLAs FLA6 FLA7 PBA y+2
|FLad | FLAS \
L \
T S Vv D Fi E |
A FILE S (0] | | IDATA STREAM S FILE :
P SPAD MARK E SPAD L SPAD R SPAD LISECTION SPAD P SPAD MARK /,'
E T B B 2 B ;
it I T
\ |
v '
Data Set
PBA y+3 PBAy+4
\
) E
FILE S FILE
y MARK g |SPAD MARK
P T
/
| /

Figure 10. Physical Block and Format Logical Block Boundaries

3.4.3 Calculating Physical Block Addresses

One of the MTF design goals was fast retrieval of stored data. Every Descriptor Block in a Data Set contains a Format L ogical
Block Address. Thefollowing calculation provides the means of determining the Physical Block Address of a Descriptor
Block given the Format Logical Block Addressit contains. The result of the calculation is rounded down.

Req,, = (Reqp, , - SSET)/ (Physical Block Size/ Format Logical Block Size) + SSET

PBA
Red 5, isthe Physical Block Address of the requested Descriptor Block.
Red,, isthe Format Logical Block Address of the requested Descriptor Block.
SSET . isthe Format Logical Block Address of the MTF_SSET Descriptor Block (non zero
on spanned next media of a spanned data set).
SSET isthe Physical Block Address of the MTF_SSET Descriptor Block.

Figurel1l. Calculating Physical Block Addresses

Copyright 1997 Seagate Software, Inc.

9/15/00 Page 23

Format Description

3.5 Alignment

MTF isalinear format that must have Descriptor Blocks and Data Streams aligned on specific boundaries. Descriptor Blocks
are aligned to Format L ogical Block Boundaries and Data Stream are aligned to a Stream Alignment Factor. Filemarks are
aligned to a Physical Block Boundary.

3.5.1 Descriptor Blocks

Descriptor Blocks must be aligned on a Format Logical Block Boundary. To do this, all Descriptor Blocks use the SPAD Data
Stream as the last Data Stream associated with the Descriptor Block.

3.5.2 Data Streams

All Data Streams are aligned on a Stream Alignment Factor of four bytes. A fill pattern of zero isused in the four byte Stream
Alignment for C2 security. If the Data Stream is already on a Stream Alignment Factor, no pad is needed. In the figure below,
the File Descriptor Block contains afield Offset To Next Event. Thisfield contains the size of the File Descriptor Block plus
the number of bytes necessary to align the Data Stream to afour byte Stream Alignment Factor.

4 byte Stream 4 byte Stream 4 byte Stream
Alignment Alignment Alignment
\ 4 r \
Checksum
E”EfK a Stream Data a for NTEA a Stream Data
Stream Data
\ / / \
NTEA CSUM STAN
Stream Header Stream Header Stream Header
STREAM_CHECKSUMED STREAM_CHECKSUMED

Figurel12. Stream Alignment Factor

3.5.3 Filemarks

Filemarks are always written on a Physical Block Boundary. The SPAD Data Stream is always used to pad to the next
Physical Block Boundary where the filemark can be written. The End of Set Pad Descriptor Block may optionally be used in a
Data Set prior to the first filemark.

FLA=237 FLA=248 PBA,
\ . | | \
ATASTREAM | | FILE DATA STREAM ESPB
é% SECTION | |DBLK SECTION DBLK 5P ALESHR i
\ /« / \
SPAD PAD

Figure13. With End of Set Pad Descriptor Block

Copyright 1997 Seagate Software, Inc.
Page 24 10/1/98

Format Description

FLA=237 FLA=248 PBA,

\ ! } 4 \
ATASTREAM | | FILE DATA STREAM

i SECTION DBLK SECTION SPAD FILEMARK i

\

[

SPAD

Figure 14. Without End of Set Pad Descriptor Block

\

Copyright 1997 Seagate Software, Inc.

9/15/00

Page 25

Support Structures

4. Support Structures

This section provides detailed information about the support structures used in the higher level MTF structures. These support
structure are an integral part of DBLKs and Stream Headers. The three support structures described below are comprised of
fields of specific length, each having specific functions. They are building blocks used by the higher level structures.

Note: All multi-byte entitiesare written in INTEL (little endian) format

4.1 UINT64

Thislow level structure provides a method for specifying an unsigned 64-bit integer value within aDBLK structure.

Offset Content Type Size
0 Oh Least Significant 32-bits UINT32 4 bytes
4 4h Most Significant 32-bits UINT32 4 bytes

Structurel. UINT64

4.2 MTF_TAPE_ADDRESS

The MTF_TAPE_ADDRESS low level structure is used inside the Common Block Header structure and inside many of the
DBLK structures to identify non-fixed length information. The MTF_TAPE_ADDRESS low level structureis4 bytesin
length consisting of two 2 bytefields. Thefirst field (Sze) defines the size of the variable length field being referenced. The
second field (Offset) contains an offset to the start of the field from the beginning of the structure containing the
MTF_TAPE_ADDRESS.

Offset Field Name Type Size
0 Oh Size UINT16 2 bytes
2 2h Offset UINT16 2 bytes

Structure2. MTF_TAPE_ADDRESS

Copyright 1997 Seagate Software, Inc.
9/15/00 Page 27

Support Structures

4.3 MTF_DATE_TIME

The MTF_DATE_TIME low level structure uses asingle 5 byte field containing a date and a time with resolution down to the
second. Oneway thisstructureisusedisinthe MTF_FILE and MTF_DIRB DBLKSsto define specific pointsin time when
files and directories were created, modified, etc. The MTF_DATE_TIME low level structureisdefined asfollows. An
unknown or undefined date and time is represented by using zero for all five bytes.

Offset Content Type Size

0 Oh 40-bit packed date and time as UINTS8[5] 5 bytes
shown below.

Structure3. MTF_DATE_TIME

Byte O Byte 1 Byte 2 Byte 3 Byte 4
7|6|5|4|3|2|1|0 7|6|5|4|3|2|1|0 7|6|5|4|3|2|1|0 7|6|5|4|3|2|1|0 7|6|5|4|3|2|1|0

~N
<
m
>
Py

Avd
HNOH

HINOW
1NNIN
aNOO3S

Figure 15. Bitwise Organization of MTF_DATE_TIME

Byte O Byte 1 Byte 2 Byte 3 Byte 4
o|o|o|1|1|1|1|1 o|o|1|1|o|o|1|1 o|o|1|1|1|1|1|1 o|1|o|o|o|o|o|1 1|1|o|1|1|1|1|o

= w N o w
N = o ~ o

9661 <

Date = 12/31/1996
Time = 20:07:30

Figure16. Example Dataand Timein MTF_DATE_TIME Format

Copyright 1997 Seagate Software, Inc.
Page 28 10/1/98

Descriptor Blocks

5. Descriptor Blocks

This section provides detailed information about Descriptor Blocks (DBLKS). A more general description of the waysin
which the DBLKs are used in MTF can be found in Section 3, Format Description, without the detail covered here.

5.1 Common Block Header

The Common Block Header (MTF_DB_HDR) structure isfound at the start of each DBLK. The MTF_DB_HDR contains
general information required for each DBLK and includes fields describing the type of DBLK, its attributes (continuation,
compression, presence of MBC, etc.), operating system specific information and the displayabl e size of the object defined by
the DBLK (e.g. file size).

Offset Field Name Type Size
0 00h DBLK Type UINT32 4 bytes
4 04h Block Attributes UINT32 4 bytes
8 08h Offset To First Event UINT16 2 bytes
10 O0Ah oS ID UINT8 1 byte
11 0Bh OS Version UINT8 1 byte
12 0Ch Displayable Size UINT64 8 bytes
20 14h Format Logical Address UINT64 8 bytes
28 1Ch Reserved for MBC UINT16 2 bytes
30 1Eh Reserved --- 6 bytes
36 24h Control Block ID UINT32 4 bytes
40 28h Reserved --- 4 bytes
44 2Ch OS Specific Data MTF_TAPE_ADDRESS 4 bytes
48 30h String Type UINT8 1 byte
49 31h Reserved --- 1 byte
50 32h Header Checksum UINT16 2 bytes

Structure4. Common Block Header (M TF_DB_HDR)

Copyright 1997 Seagate Software, Inc.
9/15/00 Page 29

Descriptor Blocks

DBLK Type {4 bytes}
The DBLK Typefield identifies the type of DBLK (MTF_SSET, MTF_VOLB, etc.). Developers may add their own DBLK
types but they must be approved by the MTF Review Committee prior to implementation. Application software must be able

to handle the presence of unknown DBLKSs. If an unknown DBLK typeis encountered, the application software should use the
information inthe MTF_DB_HDR section to skip the information associated with the DBLK.

Note: Thevalues of the IDs were selected such that when viewed as a hex dump, they are easily identifiable in the ASCII
portion and match the names used for them up till this point.

Table2. Block ID Table

DBLK Name Description Four Character ID Hex Value
MTF_TAPE TAPEdescriptor block ‘TAPE’ 0x45504154
MTF_SSET Start of data SET descriptor block ‘SSET’ 0x54455353
MTF_VOLB VOLume descriptor Block ‘VOLB’ 0x424CA4F56
MTF_DIRB DIRectory descriptor Block ‘DIRB’ 0x42524944
MTF_FILE FILE descriptor block ‘FILE’ 0x454C4946
MTF_CFIL Corrupt object descriptor block ‘CFIL’ 0x4C494643
MTF_ESPB End of Set Pad descriptor Block ‘ESPB’ 0x42505345
MTF_ESET End of SET descriptor block ‘ESET’ 0x54455345
MTF_EOTM End Of Tape Marker descriptor block ‘EOTM’ 0x4D544F45
MTF_SFMB Soft HleMark descriptor Block ‘SFMB’ 0x424D4653

Copyright 1997 Seagate Software, Inc.
Page 30 10/1/98

Descriptor Blocks

Block Attributes{4 bytes}

The Block Attributesis a 32-bit field used to specify the attributes of aDBLK. The defined bit values for thisfield are shown
in the table below and discussed in the following table. These attribute bits are directly related to tape format issues.

The least significant 16-bits (BITO - BIT15) are valid for any DBLK and the most significant 16-bits (BIT16 - BIT31) arevalid
only for the specific DBLK listed in the table. This method allows for multiple definitions for the same bit depending on the
DBLK context. Notethat those bitslisted asvalid inany DBLK may not be valid inall DBLKS, but are used in more than one
type. Missing hitsin the 32-bit field are reserved for future use.

Table3. Block Attributes(MTF_DB_HDR)

Name Description DBLK Type | Value
MTF_CONTINUATION Bit set if DBLK is a continuation from the previous tape. any BITO
MTF_COMPRESSION Bit set if compression may be active. any BIT2
MTF_EOS_AT_EOM Bit set if the End Of Medium was hit during end of set processing. any BIT3
MTF_SET_MAP_EXISTS ?it set if an Media Based Catalog Set Map can be found on the MTF_TAPE BIT16
ape.

MTF_FDD_ALLOWED Bit set if an attempt will be made to put a Media Based Catalog MTF_TAPE BIT17
File/Directory Detail section on the tape.

MTF_FDD_EXISTS Bit set if a Media Based Catalog File/Directory Detail section has MTF_SSET BIT16
been successfully put on the tape for this Data Set.

MTF_ENCRYPTION Bit set if encryption is active for the data streams within this Data MTF_SSET BIT17
Set.

MTF_FDD_ABORTED Bit set if a Media Based Catalog File/Directory Detail section was MTF_ESET BIT16

aborted for any reason during the write operation.

MTF_END_OF_FAMILY Bit set if the Media Based Catalog Set Map has been aborted. MTF_ESET BIT17
This condition means that additional Data Sets cannot be
appended to the tape.

MTF_ABORTED_SET Bit set if the Data Set was aborted while being written. This can MTF_ESET BIT18
happen if a fatal error occurs while writing data, or if the user
terminates the data management operation. An MTF_ESET DBLK
containing this flag is put at the end of the Data Set even if it was
aborted.

MTF_NO_ESET_PBA Bit set if no Data Set ends on this tape (i.e. continuation tape must [MTF_EOTM BIT16
follow this tape).

MTF_INVALID_ESET_PBA | Bit set if the Physical Block Address (PBA) of the MTF_ESET is MTF_EOTM BIT17
invalid because the tape drive doesn't support physical block
addressing.

Note: BITO - BIT31 represent the individual bits of a 32-bit value. BITO isthe least significant bit and BIT31 is the most
significant bit.

Offset To First Event {2 bytes}

The Offset To First Event field is used as an offset from the start of the DBLK to the first data stream associated with the
DBLK. If there are no data streams associated with aDBLK, then this field contains the offset to the next DBLK.

Note: Thisisused for backwards compatibility with earlier drafts of the MTF Version 1.0 specification. MTF Version 1.00a
specifiesthat all DBLKs have at |east one data stream associated with it and that the |ast data stream be the SPAD data
stream.

OSID {2 bytes}
The OSID field identifies the operating system associated with the information in this DBLK. Values currently defined for

thisfield and for the OSVersion field arelisted in Appendix A Operating System Specific Data. Developers may add new
values for thisfield, but new values must be "registered”.

Copyright 1997 Seagate Software, Inc.
9/15/00 Page 31

Descriptor Blocks

OSVersion {2 bytes}

The OS Version field identifies the version of the operating system specified inthe OSID field. The“version” specified hereis
not arelease version of an operating system (asin Windows NT Version 3.5) but rather the version of a structure for
representing OS specific information within DBLKs. See Appendix A Operating System Specific Data for more information.

Displayable Size {8 bytes}

The Displayable Size field uses the UINT64 low level structure to specify the size that may be displayed by an application for
thisDBLK. For example, the size of afile would be stored herefor MTF_FILE DBLKs. The size displayed to a user may be
different from the physical size of an object and therefore should be used for display purposes only.

Format L ogical Address {8 bytes}

The Format Logical Addressfield also usesthe UINT64 low level structure to specify the Format Logical Address (number of
Format Logical Blocks from the first MTF_SSET in this Data Set) of this DBLK. Refer to Section 3.7 for more information on
Format Logical Addresses.

Reserved for MBC {2 bytes}

The Reserved for Media Based Catalog (MBC) field is used to store application specific information in the Type 2 MBC-SLO
Set Map and FDD. Thisfieldis set to zero outside of the Type 2 MBC-SLO Set Map and FDD.

Control Block 1D {4 bytes}

The Control Block ID field is used for error recovery. The MTF_SSET DBLK has a Control Block ID value of zero. All
subsequent DBLK s within the Data Set will have a Control Block ID one greater than the previous DBLK’ s Control Block ID.
Valuesfor thisfield are only defined for DBLKs within a Data Set from the MTF_SSET to the last DBLK occurring prior to
the MTF_ESET.

OS Specific Data {4 bytes}
The OS Specific Data field usesan MTF_TAPE_ADDRESS low level structure to identify the location and size of an OS

specific structure. The contents of the structure are dependent upon the values of the OSID and OSVersion fields aswell as
the type of DBLK. The structures for the identified operating systems and versions are defined in Appendix C.

String Type {1 byte}
The String Type isasingle byte field that specifies the format of strings stored in thisDBLK. Thetable below specifies
acceptable valuesfor thisfield.

Table4. String Types

Name Description Value
NO_STRINGS Indicates there are no strings associated 0
with the DBLK.
ANSI_STR Indicates that strings are single byte ANSI 1
code.
UNICODE_STR Indicates that strings are two byte Unicode. 2

Header Checksum {2 bytes}

The Header Checksumfield is a 16-bit word-wise XOR sum of all the fields of the MTF_DB_HDR except for the checksum
field itself. Thisfield may be used to detect data corruption on tape.

Reserved

Reserved fields should not be used to store information as they are reserved for future use. Reserved fields should be zero
filled.

Copyright 1997 Seagate Software, Inc.
Page 32 10/1/98

Descriptor Blocks

5.1.1 DBLK Specific Attribute Bits

In addition to the attribute field in the DBLK Header, thereis an attribute field in the block specific section of all DBLKS
except the MTF_EOTM and MTF_ESPB. These attributes pertain to the content of the data, rather than its layout on tape. For
example, there are bitsin the attributes field of the MTF_SSET DBLK indicating what type of data management operation
(transfer, copy, normal backup, incremental backup, etc.) was used to create the Data Set. There are bitsin the attributes field
of the MTF_DIRB and MTF_FILE DBLKsthat indicate whether the directory or file represented by the DBLK isread only,
hidden, system or has been modified since the last backup.

Definitions of DBLK Specific Attribute Bits and their use can be found in the individual DBLK descriptions that follow. Not
all DBLKs containing this field have bits defined for them at thistime. The field was added in anticipation of future use.

Thereis onething which all the DBLK specific attribute fields have in common. The high byte of these 32-bit fields (BIT24 -
31) isavailable for vendor specific attributes. These bits do not have to be registered. It isimportant to note that, in order to
preserve data interchangeability, the vendor specific bitsshould not contain information required to properly restore the data.

5.1.2 Strings Within DBLKs

The length of stringswithin DBLKsis determined by the Size field inthe MTF_TAPE_ADDRESS low level structure that
refersto them. Unless otherwise noted, these strings are not NULL terminated and are of the string type specified for that
DBLK inthe String Typefield of the MTF_DB_HDR.

5.2 DBLK Structures

Descriptor Block structures (DBLKS) are the basic structural components of the Microsoft Tape Format. DBLKs are headers
that provide information necessary to locate and interpret the data on the tape. These DBLKSs contain fields, some of which are
low level structures, to describe and identify tapes, Data Sets, and the individual objects (e.g. volume, directories, files, etc.)
that comprise Data Sets.

All DBLKs defined in MTF include the 52 byte Common Block Header (MTF_DB_HDR) structure at the head of the DBLK
structure. The MTF_DB_HDR istypically followed by additional fields and sometimes by an OS Specific Dataareaand
String Storage area. The maximum length of aDBLK in MTF is 1024 bytes.

Copyright 1997 Seagate Software, Inc.
9/15/00 Page 33

Descriptor Blocks

5.2.1 Tape Header Descriptor Block (MTF_TAPE)

The Tape Header Descriptor Block (MTF_TAPE DBLK) contains general information that applies to the current media.
The MTF_TAPE DBLK isthefirst block on a mediaand containsinformation that is crucial to mediafamilies, such asthe
media segquence, 1D, name, description, etc. Other fieldsinthe MTF_TAPE DBLK identify characteristics of the media that
must remain constant. These characteristics can include the MTF major revision, the Media Based Catalog type used, and the
Format Logical Block size which specifies the byte alignment of all DBLK s written to the media.

Offset Field Name Type Size
0 Oh Common Block Header MTF_DB_HDR 52 bytes
52 34h Media Family ID UINT32 4 bytes
56 38h TAPE Attributes UINT32 4 bytes
60 3Ch Media Sequence Number UINT16 2 bytes
62 3Eh Password Encryption Algorithm | UINT16 2 bytes
64 40h Soft Filemark Block Size UINT16 2 bytes
66 42h Media Based Catalog Type UINT16 2 bytes
68 44h Media Name MTF_TAPE_ADDRESS 4 bytes
72 48h Media Description/Media Label MTF_TAPE_ADDRESS 4 bytes
76 4Ch Media Password MTF_TAPE_ADDRESS 4 bytes
80 50h Software Name MTF_TAPE_ADDRESS 4 bytes
84 54h Format Logical Block Size UINT16 2 bytes
86 56h Software Vendor ID UINT16 2 bytes
88 58h Media Date MTF_DATE_TIME 5 bytes
93 5Dh MTF Major Version UINT8 1 byte

Structure5. Tape Header Descriptor Block (MTF_TAPE)

Common Block Header {52 bytes}

The Common Block Header field isthe 52 byte MTF_DB_HDR structure at the beginning of every DBLK. The following
fields of the MTF_DB_HDR structure must be set to the defined value.

The DBLK Typefieldissetto ' TAPE’.
The Format Logical Addressfieldis set to zero.

The Control Block ID field is set to zero.

Media Family ID {4 bytes}
The Media Family ID field is afour byte number that identifies the Media Family to which this media belongs. A continuation

media must have the same Media Family ID asthe previous media. MTF Version 1.00a does not specify an algorithm for
generating unigue Media Family ID numbers.

Copyright 1997 Seagate Software, Inc.
Page 34 10/1/98

Descriptor Blocks

TAPE Attributes{4 bytes}

The TAPE Attributesfield isafour byte (32-bit) field specifying attributes that pertain to the content of data on this media.
Bits 0 -1 are defined below. Bits2 - 23 are reserved for future use, and the most significant 8-bits (BIT24 - BIT31) are
reserved for vendor specific attributes.

Table5. TAPE Attributes

Name Description Value

TAPE_SOFT_FILEMARK_BIT This bit is set if the soft filemarks are being BITO
used. The Soft Filemark Block Size field
must be set.

TAPE_MEDIA_LABEL_BIT This bit is set if the Media Description/Media BIT1
Label field contains a Media Label.
Reserved (set to zero) BIT2 - BIT23
Vendor Specific BIT24 - BIT31

M edia Sequence Number {2 bytes}

The Media Sequence Number field will start at “1” with the first media, and will increment by one for each new media
processed in aMedia Family.

Password Encryption Algorithm {2 bytes}

The Password Encryption Algorithmfield indicates the algorithm used to encrypt the password data associated with the Media
Password field. Applications should not access mediaif a password exists and the encryption algorithm is unknown. This
value must be a"registered" encryption algorithm number.

Soft Filemark Block Size {2 bytes}

The Soft Filemark Block Size field contains the size of the Soft Filemark (MTF_SFMB) DBLK in multiples of 512 bytes (e.g.,
avalue of 2 equalsaMTF_SFMB DBLK size of 1024 bytes). The Soft Filemark Block Sizeis calculated from the physical
block size as reported by the device driver. The Soft Filemark Block Sizeis only required for Soft Filemark emulation.

Media Based Catalog Type {2 bytes}

The Media Based Catalog Type field indicates which of the formats described in Appendix B is used for Media Based
Catalogs. The“type”’ of Media Based Catalog (MBC) must remain consistent across an entire Media Family and is therefore
identified hereinthe MTF_TAPE DBLK.

Thereisan MBC “version” defined inthe MTF_SSET DBLK which identifies minor version changes for a specific MBC type.

Table6. Media Based Catalog Types

Name Value
No MBC used 0
Type 1 MBC 1
Type 2 MBC 2

Media Name {4 bytes}
The Media Name field uses the four byte MTF_TAPE_ADDRESS low level structure to specify the location and size of a

string used to identify the mediato auser. If no name is associated with the media, then the Szefield in the
MTF_TAPE_ADDRESS low level structure will be zero.

Copyright 1997 Seagate Software, Inc.
9/15/00 Page 35

Descriptor Blocks

Media Description/M edia L abel {4 bytes}
The Media Description/Media Label field also usesthe four byte MTF_TAPE_ADDRESS low level structure to specify the
location and size of a Media Description string or a software generated Media Label. If aMediaLabel isused, the

TAPE_MEDIA_LABEL_BIT of the TAPE Attributes filed is set. If ho Description/Label is associated with the mediathen the
Szefieldinthe MTF_TAPE_ADDRESS low level structure will be zero.

M edia Description Definition
A Media Description is used to describe the contents of the mediain a human readable form

Media L abel Definition

A MediaLabel isauniqueidentifier that is generated by an application when aMTF or non MTF mediaisintroduced.
The Media Label is used by the application for media management. Once a unique Media Label is generated by an
application, the application must guarantee that the Media Label is preserved each time the mediais overwritten. A Media
Label is comprised of the Tag, Version, Vendor, Vendor 1D, Creation Time Stamp, Cartridge Label, Side, MedialD,
MediaDomain ID, and Vendor Specific fields. All fieldsin the Media Label are separated by the ‘| character and are of
the alpha numeric type with the inclusion of the following characters‘+", *-*,*_’, “",*/, ", *{*,and '} .

Table7. Media Label

Name Description
Tag Thetag field identifiesthisasaMedialLabel. Thisfieldis set to the string
“MTF Media Label”.
Version The MediaLabel version number. Thisis set to the three characters‘1.0'.
Vendor The name of the vendor that created the Media Label.

Vendor Product ID The vendor product ID field is used to uniquely identify the product that
generated thisMediaLabel. The vendor product ID is determined by the
vendor. Thisfieldisoptional. If unused thisfield isempty.

Creation Time Stamp | Date and time the Media Label was originally generated. The creation time
stampisinthe YYYY/MM/DD.HH:MM:SS format.

Cartridge Label Theidentifier that is printed on the label that is affixed to the cartridge or
the bar code label.

Side The side field contains the current side number of the media. For single
sided media, thisfield is always set to the character ‘1'. For double sided
media, thisfield is set to the character ‘1’ on the primary side and the
character ‘2’ on the opposite side.

NOTE: On double sided media, the Tag, Version, Vendor, Vendor Product
ID, Creation Time Stamp, Cartridge Label, Media ID, Media
Domain ID, and Media Domain Name fields must be identical on
bothsides.

MedialD The medialD isaglobally unique identifier—128-bit integer that is
guaranteed to be unique in the world across space and time. Thisglobally
unique identifier isalso known asaUUID (universally unique ID) as
defined by the Open Software Foundation's Distributed Computing
Environment. If thisfield was not generated using the specified UUID
algorithm, it cannot start with the character ‘{"*.

MediaDomain ID The mediadomain ID isalso aUUID. It isused toidentify the media
domain in which the mediawas labeled. A domain is avendor specific
collection of resources (e.g., a backup server). If thisfield was not
generated using the specified UUID algorithm, it cannot start with the
character ‘{*. Thisfield isoptional. If unused thisfield isempty.

Copyright 1997 Seagate Software, Inc.
Page 36 10/1/98

Descriptor Blocks

Vendor Specific Vendor specific extensionsto the MediaLabel. Vendor specific extensions
areoptional. All vendor specific extensions start with the three characters
‘VS.
Example Media Label:

MTF Media Label|1.0|Seagate|PV L|1996/03/29.18:36:10|A B1234|1|{ 9EAA 3460-89BA-11cf-8A04-
0O0O0COD9CAO0D} |{ 7TE43CEA0-89BA-11cf-8A04-0000COD9CA 0D} | VS:First Vendor Specific Parameter

M edia Password {4 bytes}

The Media Password field usesthe MTF_TAPE_ADDRESS low level structure to specify the location and size of astring
containing the password for thismedia. The associated data will be encrypted using the algorithm specified by the Password
Encryption Algorithmfield. If no password is associated with the media, then the Size field inthe MTF_TAPE_ADDRESS
structure will be zero.

Software Name {4 bytes}

The Software Name fieldisan MTF_TAPE_ADDRESS low level structure specifying the location and size of a string
containing the name of the software application that created this media. The Szefield of the MTF_TAPE_ADDRESS
structure should never be zero.

Format Logical Block Size {2 bytes}

The Format Logical Block Sizeisatwo byte field used to specify the alignment for all DBLKs on the media. Valid values for
the Format Logical Block Size are 512 and 1024 bytes.

Software Vendor 1D {2 bytes}

The Software Vendor ID isatwo byte field that identifies the vendor 1D of the software application that wrote thismedia. This
value must be a "registered" software vendor ID number.

Media Date {5 bytes}

The Media Date field uses the five byte MTF_DATE_TIME low level structure which indicates the exact date and time that
this mediawasfirst created. Theresolution is down to the second.

MTF Major Version {1 byte}

The MTF Major Version isasingle byte field used to identify the major version of Microsoft Tape Format used to create this
media. Version numbersstart at “1” asin MTF Version 1.00a and increment by one with each major revision. Thisfield
allows for 255 major versions. All setswritten to this Media Family must use the same major version of this format.

An MTF Minor Version isidentified in the MTF_SSET DBLK. MTF Version 1.00a has a minor version number of “0”.
Minor versions of an MTF Major Version may have differencesin the structure of DBLK fields but must maintain backwards
compatibility (i.e. fields cannot be removed, only added). Please refer tothe MTF_SSET DBLK description for more
information on this subject.

Table8. Major Version Numbers

Name Value

MTF Major Version 1

Copyright 1997 Seagate Software, Inc.
9/15/00 Page 37

Descriptor Blocks

5.2.2 Start of Data Set Descriptor Block (MTF_SSET)

The Start of Data Set Descriptor Block (MTF_SSET DBLK) containsinformation describing the Data Set. The MTF_SSET
DBLK isput at the beginning of an entire Data Set. This structure contains information identifying and describing all
important aspects of the Data Set such as: the Physical Block Address (PBA), user name and password, data management
software version, encryption and compression algorithms used, Data Set number, backup attributes, mediawrite time, time
zone, MTF minor version used, etc.

The organization of the MTF_SSET structureusesaMTF_DB_HDR structure followed by a number of fields and a String
Storage Area. The String Storage Areais used for storing strings such as the name of the Data Set, the user name, etc.

Offset Field Name Type Size
0 Oh Common Block Header MTF_DB_HDR 52 bytes
52 34h SSET Attributes UINT32 4 bytes
56 38h Password Encryption Algorithm UINT16 2 bytes
58 3Ah Software Compression Algorithm | UINT16 2 bytes
60 3Ch Software Vendor ID UINT16 2 bytes
62 3Eh Data Set Number UINT16 2 bytes
64 40h Data Set Name MTF_TAPE_ADDRESS 4 bytes
68 44h Data Set Description MTF_TAPE_ADDRESS 4 bytes
72 48h Data Set Password MTF_TAPE_ADDRESS 4 bytes
76 4Ch User Name MTF_TAPE_ADDRESS 4 bytes
80 50h Physical Block Address (PBA) UINT64 8 bytes
88 58h Media Write Date MTF_DATE_TIME 5 bytes
93 5Dh Software Major Version UINT8 1 byte
94 5Eh Software Minor Version UINT8 1 byte
95 5Fh Time Zone INT8 1 byte
96 60h MTF Minor Version UINTS8 1 byte
97 61h Media Catalog Version UINTS8 1 byte

Structure 6. Start of Set Descriptor Block (M TF_SSET)

Common Block Header {52 bytes}

The Common Block Header field isthe 52 byte MTF_DB_HDR structure at the beginning of every DBLK. The DBLK Type
field withinthe MTF_DB_HDR will be setto *SSET’.

SSET Attributes{4 bytes}

The SSET Attributes field is four bytesin length organized as a 32-bit field. Only BitsO - 5 are defined at thistime. Bits1-5
are used to specify what type of backup operation was used to create the Data Set immediately following the MTF_SSET
DBLK onthe media. Possible operation typesinclude, copy, normal backup, differential backup, incremental backup and daily
backup. Only one of these five bits should be set for agiven Data Set. |In the descriptions that follow, the “modified” flag
(describing whether afile has been created or modified) is mentioned. Another name for thisisthe “archive’ flag. Bits6 - 23
of thisfield are reserved for future use.

Copyright 1997 Seagate Software, Inc.
Page 38 10/1/98

Descriptor Blocks

Table9. SSET Attributes

Name Description Value

SSET_TRANSFER_BIT This bit is set if the data management operation is BITO
a “transfer”. It indicates that the files in this Data
Set were removed from the source media after the
operation was completed.

SSET_COPY_BIT This bit is set if the operation is a “copy”. The BIT1
copy method copies all selected files from the
primary storage to the media. The file’s “modified”
flag IS NOT reset afterwards.

SSET_NORMAL_BIT This bit is set if the backup type is “normal”. The BIT2
normal backup method backs up all selected files.
The file’s “modified” flag IS reset afterwards.

SSET_DIFFERENTIAL_BIT | This bit is set if the backup type is “differential”. BIT3
The differential backup method only backs up
selected files having their “modified” flag set. The
file's “modified” flag IS NOT reset afterwards.

SSET_INCREMENTAL_BIT | This bitis set if the backup type is “incremental”. BIT4
The incremental backup method only backs up
selected files having their “modified” flag set. The
file's “modified” flag IS reset afterwards.

SSET_DAILY_BIT This bit is set if the backup type is “daily”. The BIT5
daily backup method only backs up selected files
created or modified with today’s date. The file's
“modified” flag IS NOT reset afterwards.

Reserved (set to zero) BIT6 - BIT23
Vendor Specific BIT24 - BIT31

Password Encryption Algorithm {2 bytes}

The Password Encryption Algorithmfield isatwo byte field indicating the ID of the algorithm used to encrypt the Data Set
Password field. Applications should not access mediaif a password exists and the encryption algorithm is unknown. This
value must be a"registered" encryption algorithm number.

Softwar e Compression Algorithm {2 bytes}

The Software Compression Algorithmfield is also atwo byte field indicating the ID of the algorithm used to compress the data
streams associated with all DBLKs within the Data Set. This 2 byte value must be a "registered" compression algorithm
number.

Note: If the MTF_COMPRESSION hit in the Block Attributes field of the Common Block Header is set and the Software
Compression Algorithm field is zero, the software compression algorithm used cannot be determined until the first
compressed Stream Header is encountered.

Software Vendor 1D {2 bytes}

The Software Vendor ID field identifies the vendor of the software that wrote this Data Set. This value must be a"registered"
software vendor 1D number.

Data Set Number {2 bytes}

The Data Set Number field isatwo byte field containing the ID number corresponding to this Data Set. Data Set Numbers
start at “one” (0x01) with the first Data Set in the Media Family, and are incremented by one for each new Data Set appended
to the Media Family. When a Data Set continues on anew media, the MTF_CONTINUATION bit in the Block Attributes field
of the MTF_DB_HDR structure of the MTF_SSET DBLK will be set, but the Data Set Number will remain the same.

Copyright 1997 Seagate Software, Inc.
9/15/00 Page 39

Descriptor Blocks

Data Set Name {4 bytes}

The Data Set Name field usesthe 4 byte MTF_TAPE_ADDRESS low level structure to specify the size and location of a
string. Thisstring, located in the String Storage Area, contains the user name given to the Data Set. If no nameis associated
with the Data Set, then the Size field of the MTF_TAPE_ADDRESS structure will be zero.

Data Set Description {4 bytes}

The Data Set Description field usesthe 4 byte MTF_TAPE_ADDRESS low level structure to specify the size and location of a
string containing a description of the Data Set for the user. If no description is associated with the Data Set, then the Size field
inthe MTF_TAPE_ADDRESS structure will be zero.

Data Set Password {4 bytes}

The Data Set Password field usesthe MTF_TAPE_ADDRESS low level structure to specify the size and location of astring
containing the password for this Data Set. The associated datain the string will be encrypted using the algorithm specified by
the Password Encryption Algorithmfield. If no password is associated with the Data Set, then the Sizefield in the
MTF_TAPE_ADDRESS structure will be zero.

User Name {4 bytes}

The User Name field usesthe MTF_TAPE_ADDRESS low level structure to specify the size and location of a string indicating
the user name of the account that generated this Data Set. 1f no user name is associated with the Data Set, then the Sizefield in
the MTF_TAPE_ADDRESS structure will be zero.

Physical Block Address (PBA) {8 bytes}

The Physical Block Address (PBA) field uses a UINT64 structure to specify the Physical Block Address of thisMTF_SSET
DBLK. PBAsareobtained from the device. Itiscritical that all software and/or device drivers conform to the same rules for
generating PBAs. Refer to section 3.6 for ageneral description of PBAS, and to Appendix L for device specific details.

Media Write Date {5 bytes}

The Media Write Date field uses the five byte MTF_DATE_TIME low level structure to indicate the exact date and time that
this Data Set was created.

Software Major Version {1 byte}

The Software Major Version is aone byte field used to specify the major version number of the software application used to
create this Data Set. For instance, this field would contain the integer “3” if Ultimate Enterprise Backup Ver. 3.1 was used to
create the Data Set.

Software Minor Version {1 byte}

The Software Minor Version is another 1 byte field which specifies the minor version number of the software application used
to create the Data Set. Thisfield would contain the value “1” using the example described above. The major and minor
software versions are vendor specific and must have integer valuesin the range of 0 to 255.

Time Zone {1 byte}

The Time Zone field isasingle byte that indicates the difference between the local timeand UCT. Thisdifferenceis stored as
the number of fifteen minute interval s between the two time zones. Therefore, the value of this field must be between -48 and
+48. (i.e. EST is-20 sinceit isfive hours after UCT). If time values are not coordinated with UCT, then this field must be set
to“127".

Table10. Time Zones

Name Description Value
LOCAL_TZ Indicates that local time is not coordinated with UCT. 127

Copyright 1997 Seagate Software, Inc.
Page 40 10/1/98

Descriptor Blocks

MTF Minor Version {1 byte}

The MTF Minor Version field is asingle byte field indicating the minor version of amajor MTF version. For example, MTF
Version 2.3 would have aminor version of “3”. The minor version can vary from one Data Set to another and is therefore
identified inthe MTF_SSET DBLK, whereas the major version must remain consistent for an entire mediaand is therefore
identified inthe MTF_TAPE DBLK.

If additional fields are added to aDBLK, then the MTF minor version will beincreased. No fieldswill be deleted in any later
minor versions of the format. Therefore, if this number is greater than or equal to the minor version of the format that your
software understands, then your program can expect all fieldsto be properly initialized.

Minor versions start at “0” for all major versions of MTF. Thisfield allowsfor 255 minor versions.

Table11l. Minor Version Numbers

Name Value

MTF Minor Version for Major Version “1” 0

Refer to the MTF_TAPE DBLK structure where the MTF Major Version is defined.

Media Catalog Version {1 byte}

The Media Catalog Version field isasingle byte field indicating the version of the Media Based Catal og written to this media.
A MediaBased Catalog hasa“type” and a“version”. Thisissimilar in effect to the major and minor versions of the MTF
format. The version can be changed on a Data Set basis and is therefore identified in the MTF_SSET DBLK. For instance,
different versions of a Media Based Catalog may have differencesin the fields of the File/Directory Detail. Thetype of MBC
cannot change within a Media Family and is therefore identified in the MTF_TAPE DBLK. Valuesfor the Media Catalog
Version field are specified in the Media Based Catal og definitions.

Copyright 1997 Seagate Software, Inc.
9/15/00 Page 41

Descriptor Blocks

5.2.3 Volume Descriptor Block (MTF_VOLB)

The Volume Descriptor Block (MTF_VOLB DBLK) contains information describing a source volume in the Data Set. The
MTF_VOLB DBLK structure contains physical volume information describing the physical location of the file(s) being written
or read. It consistsof aMTF_DB_HDR followed by an areawith fields specific to the MTF_VOLB DBLK, a String Storage
Areaused for storing the device, volume and machine names. String storage can be located anywhere following the defined
fields.

When writing the files a user sees on a network, these files may appear to be on drives E:, F: and G:, but in reality some may be
on alocal drive and others may be on one or more network servers. The MTF_VOLB DBLK will reference data that describes
the physical location of the files based on the user’slogical view at the time of the data management operation. A

MTF_VOLB DBLK must precedes any Directory Descriptor Blocks (MTF_DIRB DBLKS) for agiven volume.

Offset Field Name Type Size
0 Oh Common Block Header MTF_DB_HDR 52 bytes
52 34h VOLB Attributes UINT32 4 bytes
56 38h Device Name MTF_TAPE_ADDRESS 4 bytes
60 3Ch Volume Name MTF_TAPE_ADDRESS 4 bytes
64 40h Machine Name MTF_TAPE_ADDRESS 4 bytes
68 44h Media Write Date MTF_DATE_TIME 5 bytes

Structure7. Volume Descriptor Block (MTF_VOLB)

Common Block Header {52 bytes}

The Common Block Header field isthe 52 byte MTF_DB_HDR structure at the beginning of every DBLK. The DBLK Type
field withinthe MTF_DB_HDR will besetto ‘VOLB’. The MTF_DB_HDR contains a number of fields common to all
DBLKsaswell as an offset field for locating the OS Specific Dataarea. This area contains directory related information for a
specific operating system.

Copyright 1997 Seagate Software, Inc.
Page 42 10/1/98

Descriptor Blocks

VOLB Attributes {4 bytes}

The VOLB Attributesfield isfour bytesin length organized as a 32-bit field. VOLB Attributes define characteristics of the
Volume Block represented by thisMTF_VOLB DBLK. Only BitsO - 5 are defined at thistime. Bits6 - 23 are reserved for
futureuse. Bits2 - 5 define the format of the device name. Exactly one of these bits must be setinall MTF_VOLB DBLKs.

Table12. VOLB Attributes

Name Description Value

VOLB_NO_REDIRECT_RESTORE_BIT | Objects following this DBLK can only be BITO
restored to the device from which they were
backed up.

VOLB_NON_VOLUME_BIT Obijects following this DBLK are not associated BIT1
with a volume.

VOLB_DEV_DRIVE_BIT Device name format is, “<drive letter>:". BIT2

VOLB_DEV_UNC_BIT Device name format is UNC. BIT3

VOLB_DEV_OS SPEC BIT Device name format is OS specific (refer to BIT4
Appendix C for details on a given OS).

VOLB_DEV_VEND_SPEC_BIT Device name format is vendor specific. BIT5
Reserved (set to zero) BIT6 - BIT23
Vendor Specific BIT24 - BIT31

Note: In cases where the data objects are not associated with avolume, the MTF_VOLB DBLK isstill needed to store the
device and machine names.

Device Name {4 bytes}

The Device Name field isafour byte MTF_TAPE_ADDRESS low level structure used to specify alength and offset to a string
in the String Storage area. The string referred to by thisfield identifies the actual backup source name, which is used as the
default restore target (potentially the only allowable target if redirection of the data contained in the set is not permitted).

Most current applications use drive letters (C:, D:, E:, etc.) or UNC namesin the device name field, which are very portable,
but others such as NetWare SM S use specialized, OS specific device names which are not portable. Refer to Appendix C for
OS specific information on device name formats. Vendors may also choose to define their own device name format to meet
special requirements of their application. However, it should be noted that a vendor specific device name for avolume which
cannot be redirected would require the user to have knowledge of the source device name when restoring such a set with a
different application. In all cases, one of the VOLB attribute bits (BIT2-BIT5) defined above should be set to define the device
name format being used.

Volume Name {4 bytes}

The Volume Name field is another four byte MTF_TAPE_ADDRESS low level structure used to specify alength and offset to
the string that identifies the name associated with the volume (i.e. SYS, MAIL, etc.). Thestring referred to by thisfield isfor
display purposesonly. It isused to store things such as volume labels and network share comments.

Machine Name {4 bytes}

The Machine Name field is another four byte MTF_TAPE_ADDRESS low level structure used to indicate the size and offset
of the string containing the name of the machine that thisvolumeison (i.e. PENTIUM_1, ENG_SERYV, etc.).

Media Write Date {5 bytes}

The Media Write Datefield isafive byte MTF_DATE_TIME low level structure containing the date and time that the media
was first written for this volume.

Copyright 1997 Seagate Software, Inc.
9/15/00 Page 43

Descriptor Blocks

5.2.4 Directory Descriptor Block (MTF_DIRB)

The Directory Descriptor Block (MTF_DIRB DBLK) contains the information required for restoring a directory. It consists
of aMTF_DB_HDR followed by an areawith fields specific to the MTF_DIRB DBLK, an OS Specific Data Area and a String
Storage Area used for storing the file name. The area preceding the OS Specific Data and String Storage Areas contains fields
of information about the file that is valid across platforms. The OS Specific Data Area and String Storage Area can be placed
anywhere following the MTF_DIRB DBLK specific areaand can be reversed in order. MTF_DIRB DBLK(s) must precedes

any File Descriptor Blocks (MTF_FILE DBLKSs) for agiven directory.

Offset Field Name Type Size
0 Oh Common Block Header MTF_DB_HDR 52 bytes
52 34h DIRB Attributes UINT32 4 bytes
56 38h Last Modification Date MTF_DATE_TIME 5 bytes
61 3Dh Creation Date MTF_DATE_TIME 5 bytes
66 42h Backup Date MTF_DATE_TIME 5 bytes
71 47h Last Access Date MTF_DATE_TIME 5 bytes
76 4Ch Directory ID UINT32 4 bytes
80 50h Directory Name MTF_TAPE_ADDRESS 4 bytes

Structure 8. Directory Descriptor Block (MTF_DIRB)

Common Block Header {52 bytes}

The Common Block Header field isthe 52 byte MTF_DB_HDR structure at the beginning of every DBLK. The DBLK Type

field withinthe MTF_DB_HDR will besetto ‘DIRB’. The MTF_DB_HDR contains a number of fields common to all

DBLKs, aswell as an offset field used for locating the OS Specific Data Area. This areacontainsdirectory related information

for a specific operating system.

Page 44

Copyright 1997 Seagate Software, Inc.
10/1/98

Descriptor Blocks

DIRB Attributes {4 bytes}

The DIRB Attributesfield is four bytesin length organized as a 32-bit field. DIRB Attributes define characteristics of the
directory represented by thisMTF_DIRB DBLK. BitsO - 7 arereserved for future use. Bits8- 11 and 16 - 18 are described in
the table below. Other bits through bit 23 are reserved for future use. These bits describe directory attributes common to most
operating systems. Some operating systems do not make use of some of these attributes and where that is the case, these bits
can simply beignored.

Table13. DIRB Attributes

Name Description Value
DIRB_READ_ONLY_BIT This bit is set if the directory is marked BIT8
as read only.
DIRB_HIDDEN_BIT This bit is set if the directory is hidden BIT9
from the user.
DIRB_SYSTEM BIT This bit is set if the directory is a system BIT10
directory.
DIRB_MODIFIED_BIT This bit is set if the directory has been BIT11
modified. This is also referred to as an
“archive” flag.
DIRB_EMPTY BIT This bit set if the directory contained no BIT16
files or subdirectories.
DIRB_PATH_IN_STREAM_BIT | This bit set if the directory path is stored BIT17
in a stream associated with this DBLK.
DIRE_CORRUPT_BIT This bit set if the data associated with the BIT18
directory could not be read.
Reserved (set to zero) BITO - BIT7
BIT12 - BIT15
BIT19 - BIT23
Vendor Specific BIT24 - BIT31

Last Modification Date {5 bytes}

The Last Modification Date field is five bytes in length and contains the date and time that the directory was last modified. A
directory is considered modified whenever afile or directory belonging to this parent directory is added or removed. Thisfield
usesaMTF_DATE_TIME low level structure.

Creation Date {5 bytes}

The Creation Date field is another five byte field using the MTF_DATE_TIME low level structure. Thisfield containsthe
date and time when the directory was first created.

Backup Date {5 bytes}

The Backup Datefield is another five byte MTF_DATE_TIME field containing the date and time that the directory was last
backed up. A directory isconsidered “backed up” when its entire contents are backed up.

Last Access Date{5 bytes}

The Last Access Datefield also usesthe five byte MTF_DATE_TIME low level structure to describe the date and time that the
directory was last accessed. A directory is considered “accessed” when its contents are modified in any way.

Note: Backup programs should not affect thisfield if possible.

Copyright 1997 Seagate Software, Inc.
9/15/00 Page 45

Descriptor Blocks

Directory 1D {4 bytes}

The Directory ID isafour byte field containing the ID of the directory. This|D starts at one for the first directory in a Data Set
and isincremented by one for each additional directory processed. Thisfield isused for error handling and recovery.

Directory Name {4 bytes}

The Directory Name field isfour bytesin length usingan MTF_TAPE_ADDRESS low level structure that specifies the
location and size of the name associated with this directory. The directory name does not include the server, volume or drive.
In addition, the “root” indicator ‘\" must not be the first character. It isassumed that all directories start from the root. The
path separator for the native system must be replaced by aNULL character (\0'). The Sze field within the
MTF_TAPE_ADDRESS must be used to determine the length of the name string.

The“root" directory would be stored as a one character length string with asingle NULL character. For consistency with the
specification of the "root", al directory names are stored with atrailing NULL character. Note that thisisatrailing path
separator, not a string terminator.

The entry for a"root" directory (i.e. "C:\") isstored inthe DBLK as:
"\ 0

Theentry for the directory " C:\apps\fred\bloggs\" is stored in the DBLK as:
apps'\0'fred' \0' bl oggs'\ 0’

Since the size of the path may resultinaDBLK size that islarger than the maximum allowed, larger directory names would
have to be stored in a separate 'PNAM' data stream. This stream must be the first data stream following the MTF_DIRB
DBLK. When restoring this directory to a different operating system, the name used to create the directory may have to be
modified to eliminate characters that are not valid for the target operating system or to adjust the size to the maximum directory
name length for the target operating system.

Copyright 1997 Seagate Software, Inc.
Page 46 10/1/98

Descriptor Blocks

5.25 File Descriptor Block (MTF_FILE)

TheFile Descriptor Block (MTF_FILE DBLK) contains the information required for restoring afile. It consists of a
MTF_DB_HDR followed by an areawith fields specific to the MTF_FILE DBLK, an OS Specific Data area and a String
Storage Area used for storing the file name. The area preceding the OS Specific Data and String Storage Areas containsfields
of information about the file that is valid across platforms. The OS Specific Data and String Storage Areas can be placed
anywhere following the MTF_FILE DBLK specific area.

Offset Field Name Type Size
0 Oh Common Block Header MTF_DB_HDR 52 bytes
52 34h FILE Attributes UINT32 4 bytes
56 38h Last Modification Date MTF_DATE_TIME 5 bytes
61 3Dh Creation Date MTF_DATE_TIME 5 bytes
66 42h Backup Date MTF_DATE_TIME 5 bytes
71 47h Last Access Date MTF_DATE_TIME 5 bytes
76 4Ch Directory ID UINT32 4 bytes
80 50h File ID UINT32 4 bytes
84 54h File Name MTF_TAPE_ADDRESS 4 bytes

Structure9. File Descriptor Block (MTF_FILE)

Common Block Header {52 bytes}

The Common Block Header field isthe 52 byte MTF_DB_HDR structure at the beginning of every DBLK. The DBLK Type
fieldwithin MTF_DB_HDR will besetto ‘FILE'. The MTF_DB_HDR contains a number of fields commonto all DBLKs as

well as an offset field for locating the OS Specific Data Area.

Copyright 1997 Seagate Software, Inc.
9/15/00

Page 47

Descriptor Blocks

FILE Attributes{4 bytes}

The FILE Attributes field isfour bytesin length organized as a 32-bit field. Thisfield specifiesthe attributes of the file
represented by this DBLK.

Thetable below shows the bits currently defined and those reserved for future use. These bits describe file attributes common
to most operating systems. Some operating systems do not make use of some of these attributes and where that is the case,
these bits can simply beignored.

Table14. FILE Attributes

Name Description Value
FILE_READ_ONLY_BIT This bit is set if the file is marked as read only. BIT8
FILE_HIDDEN_BIT This bit is set if the file is hidden from the user. BIT9
FILE_SYSTEM BIT This bit is set if the file is a system file. BIT10
FILE_MODIFIED_BIT This bit is set if the file has been modified. This is BIT11

also referred to as an “archive” flag.
FILE IN_USE_BIT This bit set if the file was in use at the time it was BIT16
backed up.
FILE_NAME_IN_STREAM_BIT | This bit set if the file name is stored in a stream BIT17
associated with this DBLK.
FILE_CORRUPT_BIT This bit set if the data associated with the file BIT18
could not be read.
Reserved (set to zero) BITO - BIT7
BIT12 - BIT15
BIT19 - BIT23
Vendor Specific BIT24 - BIT31

Last Modification Date {5 bytes}

The Last Modification Date field is five bytesin length and contains the date and time that the file was last modified. This
fieldusesan MTF_DATE_TIME low level structure.

Creation Date {5 bytes}

The Creation Date field is another five byte field using the MTF_DATE_TIME low level structure. Thisfield containsthe
date and time that the file was first created.

Backup Date {5 bytes}

The Backup Date field is another five byte MTF_DATE_TIME field containing the date and time that the file was last backed
up. A fileisconsidered “backed up” if it is copied to removable storage media as part of a data protection operation.

Last Access {5 bytes}

The Last Accessfield also usesthe five byte MTF_DATE_TIME low level structure to describe the date and time that the file
was last accessed. Note: If possible, backup programs should not affect thisfield.

Directory 1D {4 bytes}

The Directory ID isafour bytefield containing the ID of the directory that thefileresidesin. ThisID should be the same as
that which was set in the Directory ID field of the last processed MTF_DIRB DBLK. Thisfield isused for error handling and
recovery. Refer tothe MTF_DIRB DBLK description for information on how Directory 1D’ s are generated.

Copyright 1997 Seagate Software, Inc.
Page 48 10/1/98

Descriptor Blocks

File ID {4 bytes}
TheFilelID field isafour byte field identifying thisfile. File IDs start at one (0001h) with the first file belonging to a Data Set
and are incremented by one for each file processed. Thisfield isused for error handling and recovery.

File Name {4 bytes}

The File Name field uses the four byte MTF_TAPE_ADDRESS low level structure to specify the location and size of the name
associated with thisfile. The offset within MTF_TAPE_ADDRESS pointsto the String Storage Area at the end of the
MTF_FILE DBLK where the file name string is physically stored. The file name can contain any characters and may be of any
length. Refer to the description of the MTF_TAPE_ADDRESS low level structure for details.

Since the size of the file name may result in aDBLK size that islarger than the maximum allowed, larger file names would
have to be stored in a separate 'FNAM' data stream. This stream must be the first data stream following the MTF_FILE
DBLK.

When restoring thisfile to adifferent operating system, the name used to create the file may have to be modified to eliminate
charactersthat are not valid for the target operating system, or to adjust the size to the maximum file name length supported by
thetarget operating system. File names are stored without path information.

Copyright 1997 Seagate Software, Inc.
9/15/00 Page 49

Descriptor Blocks

5.2.6 Corrupt Object Descriptor Block (MTF_CFIL)

It is often the case that a DBLK has already been written when it is discovered that not all of its associated data can be read due
to disk corruption, network failure, etc. When this condition occurs, the portions of the stream that could not be read are
padded to maintain the correct stream size.

A Corrupt Object Descriptor Block (MTF_CFIL DBLK) isthen written to indicate that the data associated with the previous
DBLK iscorrupt. The MTF_CFIL DBLK containsfields for the stream number and the byte offset in that stream where the
corruption began. Itisnot used for any kind of media error recovery.

If needed thereisonly one MTF_CFIL DBLK for aspecific object being written to media. Any portion of the stream which
cannot be read due to the corruption is replaced on the mediawith zeroes.

Note: The exact number of bytes of object data specified in the Stream Header must still be written to media.

The reason that the object data must be padded is because most devices do not allow positioning back to the start of the stream
to rewrite the Stream Header with anew length. If the stream isvariable in length, it is not necessary to complete more than
the current segment of the stream if no more valid data can be written.

Offset Field Name Type Size
0 Oh Common Block Header | MTF_DB_HDR 52 bytes
52 34h CFIL Attributes UINT32 4 bytes
56 3Ch reserved --- 8 bytes
64 40h Stream Offset UINT64 8 bytes
72 48h Corrupt Stream Number | UINT16 2 bytes

Structure 10. Corrupt Object Descriptor Block (MTF_CFIL)

Common Block Header {52 bytes}

The Common Block Header field isthe 52 byte MTF_DB_HDR structure at the beginning of every DBLK. The DBLK Type
field within MTF_DB_HDR will besetto ‘CFIL’. The MTF_CFIL DBLK does not use an OS Specific Data Area nor a String
Storage Area.

Copyright 1997 Seagate Software, Inc.
Page 50 10/1/98

Descriptor Blocks

CFIL Attributes{4 bytes}

The CFIL Attributesfield isfour bytesin length organized as a 32-bit field. Thisfield specifies the attributes of the corrupt
data represented by thisMTF_CFIL DBLK. Only Bits 16 - 18 are defined at thistime. The table below describes the meaning

of the bits.

Table15. CFIL Attributes

Name Description Value

CFIL_LENGTH_CHANGE_BIT This bit is set if the file size has changed since the file BIT16
was opened for the write operation.

CFIL_UNREADABLE_BLK_BIT | This bitis set if a hard error was encountered reading BIT17
the source media (hard disk). This usually indicates
that the media itself is bad (i.e. bad sector).

CFIL_DEADLOCK_BIT This bit is set if the file was deadlocked. (i.e. Ona BIT18
system supporting record and file locking, it was not
possible to get a region of a file unlocked within a
watchdog time interval.)

Reserved (set to zero) BITO - BIT15
BIT19 - BIT23
Vendor Specific BIT24 - BIT31

Stream Offset {8 bytes}

The Stream Offset field uses the UINT64 low level structure to indicate the byte offset into the data stream where the
corruption padding begins. If the stream data is compressed, the offset of the corruption isthe offset into the datawhen it is
decompressed.

Corrupt Stream Number {2 bytes}

The Corrupt Stream Number is atwo byte field indicating which stream in the Data Stream Section of the previous MTF_FILE
DBLK contains padding for corrupt data. Keep in mind that the Data Stream Section followingaMTF_FILE DBLK can
contain several data streams each with a Stream Header. The first stream in the Data Stream Section would be 1, the second

would be 2, and so on.

Copyright 1997 Seagate Software, Inc.
9/15/00 Page 51

Descriptor Blocks

5.2.7 End of Set Pad Descriptor Block (MTF_ESPB)

The End of Set Pad Descriptor Block (MTF_ESPB DBLK) isonly used when the physical block size written by the deviceis
larger than the Format Logical Block size specified inthe MTF_TAPE DBLK. When thisisthe case, it is possible for a Data
Set to end prior to a physical boundary. This occurs even when the data associated with the last DBLK in the Data Set has
been padded to a Format Logical Block boundary. The MTF_ESPB DBLK isused in this case to pad zeroes to the next
physical block boundary, where afilemark iswritten to mediafollowed by an MTF_ESET DBLK, marking the end of the Data
Set.

Note: Itis possibleto achieve the same effect by extending the last SPAD in the Data Set such that it ends on a physical block
boundary if it isknown that you have written the last DBLK at the time the SPAD iswritten.

Offset Field Name Type Size

0 Oh Common Block Header MTF_DB_HDR 52 bytes

Structure11. End of Set Pad Descriptor Block (M TF_ESPB)

Common Block Header {52 bytes}

The Common Block Header field isthe 52 byte MTF_DB_HDR structure at the beginning of every DBLK. The DBLK Type
fieldinthe MTF_DB_HDR will be set to ‘ESPB’.

Copyright 1997 Seagate Software, Inc.
Page 52 10/1/98

Descriptor Blocks

5.2.8 End of Data Set Descriptor Block (MTF_ESET)

The End of Data Set Descriptor Block (MTF_ESET DBLK) used in conjunction with afilemark, denotes the end of a Data
Set. The MTF_ESET DBLK duplicates the Data Set Number and Media Write Data fields of the MTF_SSET DBLK structure
for this Data Set. In addition, data streams may be present for the support of Media Based Catal ogs.

Offset Content Type Size
0 Oh Common Block Header MTF_DB_HDR 52 bytes
52 34h ESET Attributes UINT32 4 bytes
56 38h Number Of Corrupt Files UINT32 4 bytes
60 3Ch Reserved for MBC UINT64 8 bytes
68 44h Reserved for MBC UINT64 8 bytes
76 4Ch FDD Media Sequence Number | UINT16 2 bytes
78 4Eh Data Set Number UINT16 2 bytes
80 50h Media Write Date MTF_DATE_TIME 5 bytes

Structure12. End of Data Set Descriptor Block

Common Block Header {52 bytes}
The Common Block Header field isthe 52 byte MTF_DB_HDR structure at the beginning of every DBLK

fields of the MTF_DB_HDR structure must be set to the defined value.

The DBLK Typefieldissetto ‘ESET’.

The Format Logical Addressfield is set to zero.

. Thefollowing

The Control Block ID field iscontinued from the dataset. All MTF_ESET DBLKsin the MBC share the same Control

Block ID.

Copyright 1997 Seagate Software, Inc.
9/15/00

Page 53

Descriptor Blocks

ESET Attributes {4 bytes}

The ESET Attributes field is four bytesin length organized as a 32-bit field. Only Bits0 - 5 are defined at thistime. Bits1-5
are used to specify what type of backup operation was used to create the Data Set immediately preceding the MTF_ESET
DBLK onthe media. Possible operation typesinclude, copy, normal backup, differential backup, incremental backup and daily
backup. Only one of these five bits should be set for agiven Data Set. In the descriptionsthat follow, the “modified” flag
(describing whether afile has been created or modified) is mentioned. Another name for thisisthe “archive” flag. Bits6 - 23
of thisfield are reserved for future use.

Table16. ESET Attributes

Name Description Value

ESET Transfer Bit This bit is set if the data management operation is a BITO
“transfer”. It indicates that the files in this Data Set were
removed from the source media after the operation was
completed.

ESET Copy Bit This bit is set if the operation is a “copy”. The copy method BIT1
copies all selected files from the primary storage to the
media. The file’s “modified” flag IS NOT reset afterwards.

ESET Normal Bit This bit is set if the backup type is “normal”. The normal BIT2
backup method backs up all selected files. The file's
“modified” flag IS reset afterwards.

ESET Differential Bit | This bit is set if the backup type is “differential”. The BIT3
differential backup method only backs up selected files
having their “modified” flag set. The file’s “modified” flag 1S
NOT reset afterwards.

ESET Incremental Bit | This bit is set if the backup type is “incremental”. The BIT4
incremental backup method only backs up selected files
having their “modified” flag set. The file’s “modified” flag 1S
reset afterwards.

ESET Daily Bit This bit is set if the backup type is “daily”. The daily backup BIT5
method only backs up selected files created or modified with
today’s date. The file's “modified” flag IS NOT reset

afterwards.
Reserved (set to zero) BIT6 - BIT23
Vendor Specific BIT24 - BIT31

File/Directory Detail PBA {8 bytes}

The File/Directory Detail PBA field uses the eight byte UINT64 structure to specify the Physical Block Address of the MBC
File/Directory Detail stream. This FDD stream is associated with the Data Set marked at the end by thisMTF_ESET DBLK.

FDD Media Sequence Number {2 bytes}

The FDD Media Sequence Number field istwo bytesin length and indicates the Media Sequence Number associated with the
File/Directory Detail for this Data Set.

Data Set Number {2 bytes}

The Data Set Number field isatwo byte field containing the ID number corresponding to this Data Set. This should be the
same Data Set Number found inthe MTF_SSET DBLK. Data Set Numbers start at “one” (0x01) with the first Data Set on the
media, and are incremented by one for each new Data Set appended to the media. Refer tothe MTF_SSET DBLK for more
information.

Copyright 1997 Seagate Software, Inc.
Page 54 10/1/98

Descriptor Blocks

Media Write Date {5 bytes}

The Media Write Date field usesthe five byte MTF_DATE_TIME low level structure to indicate the exact date and time that
this Data Set was created.

Copyright 1997 Seagate Software, Inc.
9/15/00 Page 55

Descriptor Blocks

5.2.9 End of Tape Marker Descriptor Block (MTF_EOTM)

The End Of Tape Marker Descriptor Block (MTF_EOTM DBLK) is used to indicate that the End Of Media (EOM) was
reached while writing the media and that the Media Family continues onto another media. When the EOM is reached, the
write operation may be in awide range of conditions. Each condition must be handled in aunique way. Refer to End of Media
Processing.

Offset Content Type Size
0 Oh Common Block Header | MTF_DB_HDR 52 bytes
52 34h Last ESET PBA UINT64 8 bytes

Structure 13. End of Tape Marker Descriptor Block

Common Block Header {52 bytes}

The Common Block Header field isthe 52 byte MTF_DB_HDR structure at the beginning of every DBLK. The following
fields of the MTF_DB_HDR structure must be set to the defined value.

The DBLK Typefieldissetto ‘EOTM’.
The Format Logical Addressfield is set to zero.

The Control Block ID field is set to zero.

Last ESET PBA {8 bytes}

The Last ESET PBAfield usesthe eight byte UINT64 structure to specify the Physical Block Address of the last full
MTF_ESET written to media.

Copyright 1997 Seagate Software, Inc.
Page 56 10/1/98

Descriptor Blocks

5.2.10 Soft Filemark Descriptor Block (MTF_SFMB)

The Soft Filemark Descriptor Block (MTF_SFMB DBLK) is used to emulate filemarks when hardware filemark support is
not available. Setting the TAPE_SOFT_FILEMARK_BIT bit in the TAPE Attributesfield of the MTF_TAPE DBLK enables
soft Filemarks. The Soft Filemark Block Size field of the MTF_TAPE DBLK determines the size of aMTF_SFMB DBLK.
The size of the MTF_SFMB DBLK must be defined so that it starts and ends on a physical block boundary. The MTF_SFMB
DBLK cannot have any associated data streams. The MTF_SFMB DBLK contains an array of physical block addresses of
previous filemarks. If an entry inthearray isnot used, it is set to avalue of zero.

Offset Content Type Size
0 Oh Common Block Header MTF_DB_HDR 52 bytes
52 34h Number of Filemark Entries UINT32 4 bytes
56 38h Filemark Entries Used UINT32 4 bytes
60 3Ch | PBA of Previous Filemarks Array | UINT32 sizeof (MTF_SFMB) - 60

Structure 14. Soft Filemark Descriptor Block

Common Block Header {52 bytes}
The Common Block Header field isthe 52 byte MTF_DB_HDR structure at the beginning of every DBLK. The following
fields of the MTF_DB_HDR structure must be set to the defined val ue.

The DBLK Typefieldissetto‘SFMB’.

The Format Logical Addressfield is set tothe number of Physical Blocks from the beginning of the media.

The Control Block ID field is used for error recovery. Thefirst MTF_SFMB DBLK in aMedia Family has a Control
Block ID value of one. All subsequent MTF_SFMB DBLKs within the Data Set will have a Control Block ID one
greater than the previousMTF_SFMB DBLK’s Control Block ID.

Number of Filemark Entries{4 bytes}

The Number of Filemark Entriesfield isfour bytesin size and contains the total number of filemarksin the PBA of Previous
Filemark Array.

Filemark Entries Used {4 bytes}

The Filemark Entries Used field isfour bytesin size and contains number of valid filemarksin the PBA of Previous Filemark
Array.

PBA of Previous Filemarks Array {4 byte elements}

The PBA of Previous Filemarks Array field is an array of filemark elements. Each filemark element is a4 byte PBA of a
previous filemark. The PBA of Previous Filemarks Array is cumulative. Entries are always stored in descending order. When
the number of previous filemarks exceeds the number of entriesin the array, the array isfilled with those entries closest to End
of Data (EOD). If aentry inthearray isnot used, it is set to avalue of zero.

Copyright 1997 Seagate Software, Inc.
9/15/00 Page 57

Descriptor Blocks

\

TAPE |SEMB | Data Set 1|SFEMB | Data Set 1{SEMB |Data Set 2 [SEMB | Data Set 2 |SEMBH - . -
DBLK [DBLK DBLK |MBC DBLK DBLK [MBC DBLK P

- £y L] Y EY (-3 \ \

PBA, PBA PBA, PBA, PBA, ;. PBA

SFMB N
COMMON BLOCK HEADER

fixed
" length
/60 bytes

Number of Filemark Entries

Filemark Entries Used (4)
——

PBA, (d)

One
PBA, (¢) Physical

PBA, (a)

PBA; (zero)

size of
PBA; (zero) > physical

block -
PBA, (zero) 60 bytes

PBA, (zero)

_ pPBA—

PBA, ; (zero)

PBA, d (zero)

Figure 17. Soft Filemark Block Layout

Programming Note: The MTF_SFMB DBLK contains a cumulative list of filemark PBAs. To build alist of all filemarks seek
to EOD and backup one physical block. Read the MTF_SFMB DBLK. If the Number of Filemark
Entriesfield is equal to the Filemark Entries Used field, then previous MTF_SFMB DBLKs must be read

to build acomplete list of al filemarks.

Copyright 1997 Seagate Software, Inc.
Page 58 10/1/98

Data Streams

6. Data Streams

This section provides detailed information about data streams. Data streams provided a mechanism for encapsulating different
types of information using Stream Headers. This encapsulated information is then associated with a DBLK. One or more data
streams can be associated with aDBLK. By breaking up different type of information into separate data streams, software can
restore known stream types while ignoring unknown types.

4 byte Stream 4 byte Stream 4 byte Stream
Alignment Alignment Alignment
\ | ' \
FILE S S S FILE
X DBLK H Stream Data H Stream Data |H SPAD Data DBLK i
\
NTEA STAN SPAD
Stream Header Stream Header ~ Stream Header

Figure18. Data Streams

6.1 Stream Header (MTF_STREAM_HDR)

Each data stream is preceded by a Stream Header structure (MTF_STREAM_HDR). The first Stream Header associated with
agiven DBLK islocated at an offset from the beginning of the DBLK. This offset is stored in the Offset To Next Event field of
the MTF_DB_HDR portion of the DBLK. All Stream Headers begin on 4 byte boundaries.

If aStream Header is split at EOM, it isre-written in full on the continuation media at an offset to data stored in the

continuation DBLK. If EOM iscrossed in the middle of the stream (by far the most common of all EOM cases), a copy of the
stream's header, with an adjusted size and the continuation bit set, iswritten at the offset to datain the continuation DBLK.
The Stream Header isfollowed by the remainder of the data.

Offset Content Type Size
0 Oh Stream 1D UINT32 4 bytes
4 4h Stream File System Attributes UINT16 2 bytes
6 6h Stream Media Format Attributes UINT16 2 bytes
8 8h Stream Length UINT64 8 bytes
16 10h Data Encryption Algorithm UINT16 2 bytes
18 12h Data Compression Algorithm UINT16 2 bytes
20 14h Checksum UINT16 2 bytes

Stream ID {4 bytes}

Structure 15. Stream Header (MTF_STREAM_HDR)

The Stream ID isafour byte field that identifies the type of data stream. A four byte ASCII value as shown in the table below
is used to specify the Stream ID. Additional four byte ASCII values can be added.

Copyright 1997 Seagate Software, Inc.
9/15/00

Page 59

Data Streams

Stream File System Attributes {2 bytes}

The Stream File System Attributes field is two bytesin length and organized as sixteen bits. Only Bits 0 - 2 are defined at this
time, the rest are reserved for future use. These attribute bits provide useful information about the quality of the data contained
in the stream. They are defined asfollows.

Table17. Stream File System Attributes

Name Description Value

STREAM_MODIFIED _BY_READ Data in stream has changed after BITO
reading, do not attempt to do a verify
operation.

STREAM_CONTAINS_SECURITY | Security information is contained in this BIT1
stream.

STREAM_IS _NON_PORTABLE This data can only be restored to the BIT2
same OS that it was saved from.

STREAM_IS_SPARSE The stream data is sparse (see below) BIT3
Reserved for future use. BIT4 - BIT15

STREAM _|S SPARSE

The STREAM_IS SPARSE bit signifies that sparse data follows and is encapsulated by ‘ SPAR’ Data Streams. The
initial steam header specifiesthe type of sparse datain the Stream ID field (e.g., STANDARD_DATA_STREAM), has
the STREAM_IS_SPARSE bit set in the Stream File System Attributes, and has a Stream Length of zero.
Immediately followingtheinitial stream header isone or more ‘ SPAR’ Data Streams, which encapsul atesthe sparse
data.

Stream Media Format Attributes {2 bytes}

The Stream Media Format Attributes field istwo bytesin length and provides information about the physical characteristics of
the stream asthey pertain to the format. They are defined as follows.

Table18. Stream Media Format Attributes

Name Description Value
STREAM_CONTINUE This is a continuation stream. BITO
STREAM_VARIABLE Data size for this stream is variable. BIT1
STREAM_VAR_END Last piece of the variable length data. BIT2
STREAM_ENCRYPTED This stream is encrypted. BIT3
STREAM_COMPRESSED This stream is compressed. BIT4
STREAM_CHECKSUMED This stream is followed by a BITS

checksum stream.

STREAM_EMBEDDED_LENGTH | The stream length is embedded in the BIT6
data

Reserved for future use. BIT7 -
BIT15

Copyright 1997 Seagate Software, Inc.
Page 60 10/1/98

Data Streams

STREAM_EMBEDDED_LENGTH

The STREAM_EMBEDDED_LENGTH hitis obsolete and provided for backwards compatibility. This bit was used
to embed the stream length when compression was active and the stream data was broken into variable length streams.
Thisfunctionality is now provided in the Compression Frame Header.

Offset Content Type Size
0 Oh Stream Length UINT64 4 bytes
4 4h Checksum UINT16 2 bytes

Structure16. STREAM_EMBEDDED_L ENGTH

Stream Length {8 bytes}

The Stream Length field uses the 8 bytes UINT64 low level structure to specify the length of the current stream in bytes. The
Stream Length does not include the size of the MTF_STREAM_HDR structure or any padding data used for alignment.

Data Encryption Algorithm

The Data Encryption Algorithmis atwo byte field containing the registered 1D of the encryption algorithm being used to
encrypt data. Thisfieldisonly important if the STREAM_ENCRY PTED bit (BIT3) of the Stream Media Format Attributes
fieldisset.

Data Compression Algorithm

The Data Compression Algorithmfield isatwo byte field containing the registered 1D of the compression algorithm being
used to compress data. The STREAM_COMPRESSED bit (BIT4) of the Stream Media Format Attributes field must be set.

Checksum

The Checksumfield contains a word-wise XOR sum of all fields from Stream ID to the Checksum field. The two byte
Checksum field is not included in the checksum. Thisfield is used to verify that avalid Stream Descriptor is being processed
during read operations.

It should be noted that this checksum is not used for any file data verification. Itisonly used to validate the information
contained in the Sream Header (MTF_STREAM_HDR).

6.2 Stream Data

The stream data starts immediately after the Checksum field in the Stream Header. This section describes the format of Stream
Datafor the different Stream ID types.

6.2.1 Platform Independent Stream Data
This section describes Data Streams that are Operating System independent.

Table 19. Platform Independent Stream Data Types

Name Description Value
STANDARD_DATA_STREAM Standard, non-specific file data stream. 'STAN'
PATH_NAME_STREAM Directory name in stream. 'PNAM'
FILE_NAME_STREAM Supports extended length file names 'FNAM'
CHECKSUM_STREAM Checksum of previous stream data. 'CSUM'

Copyright 1997 Seagate Software, Inc.
9/15/00 Page 61

Data Streams

CORRUPT_STREAM Previous stream was corrupt ‘CRPT’
PAD_STREAM Pad to next DBLK stream. 'SPAD'
SPARSE_STREAM Sparse data. ‘SPAR’
MBC_LMO_SET_MAP_STREAM | See Media Based Catalogs - Type 1 "TSMP'
MBC_LMO_FDD_STREAM See Media Based Catalogs - Type 1 'TFDD'
MBC_SLO_SET_MAP_STREAM | See Media Based Catalogs - Type 2 'MAP2'
MBC_SLO_FDD_STREAM See Media Based Catalogs - Type 2 'FDD2'

6.2.1.1 Standard Data Stream (STANDARD_DATA_STREAM)

The Stream ID field of the Stream Header is set to ‘STAN’ to indicate Sandard Data Stream The Standard Data Stream
contains normal file data.

Window NT Note: When the Win32 BackupRead API is used, each data stream associated with the object being read will
be preceded by a Win32 stream header. This Win32 stream header should be used to fill out the
information in the MTF Stream Header, but should not be written to the media as part of the data
stream.

For standard data, the dwStreamld field of the WIN32_STREAM_ID field is set to a value of
BACKUP_DATA.

6.2.1.2 Directory Name In Stream (PATH_NAME_STREAM)

The Stream ID field of the Stream Header is set to ‘PNAM'’ to indicate Directory Name In Stream MTF limits DBLK size
to the Format Logical Block Sizefield of the MTF_TAPE DBLK. If the directory name cannot be added to the
MTF_DIRB DBLK because the new size would exceed the Format Logical Block Size limit, the directory name is placed
in the first data stream associated withthe MTF_DIRB DBLK. The PATH_IN_STREAM bit must be set in the DIRB
Attributesfield of the MTF_DIRB DBLK.

Note: When spanning, the Directory Name In Stream must be associated with the continuation MTF_DIRB DBLK.

6.2.1.3 File Name In Stream (FILE_NAME_STREAM)

The Stream ID field of the Stream Header is set to ‘FNAM’ to indicate File Name In Sream MTF limits DBLK size to
the Format Logical Block Sizefield of the MTF_TAPE DBLK. If the file name cannot be added to the MTF_FILE DBLK
because the new size would exceed the Format Logical Block Size limit, the file name is placed in the first data stream
associated withthe MTF_FILE DBLK. The FILE_IN_STREAM bit must be set in the FILE Attributesfield of the
MTF_FILE DBLK.

Note: When spanning, the File Name In Stream must be associated with the continuation MTF_FILE DBLK.

6.2.1.4 Checksum Stream (CHECKSUM_STREAM)

The Stream ID field of the Sream Header is set to *CSUM’ to indicate Checksum Stream The checksum stream is used to
verify Stream Data consistency. Each data stream associated with a DBLK may have an optional checksum stream. If a
data stream is going to have a checksum generated for data consistency, the Stream Media Format Attributes field of the
Stream Header must have the STREAM_CHECKUMED bit set and the data stream that immediately follows must be the
Checksum Stream (CSUM).

Copyright 1997 Seagate Software, Inc.
Page 62 10/1/98

Data Streams

4 byte Stream 4 byte Stream 4 byte Stream
Alignment Alignment Alignment
\ 4 r \
Checksum
E“EfK a Stream Data a for NTEA S Stream Data
Stream Data
\ V4 / \
NTEA CSUM STAN
Stream Header Stream Header Stream Header
STREAM_CHECKSUMED STREAM_CHECKSUMED

Figure19. Checksum Stream

The checksum is a 32-bit (4 bytes) XOR sum of the linear Stream Data. Independent of how the Stream Data is segmented,
the software algorithm used to generate the 32-bit checksum must guarantee consistency. For example, if the Stream Data
is segmented into chunks of 1, 2, 3, or 4 bytes, the algorithm will generate the same 32-bit checksum.

6.2.1.5 Corrupt Stream (CORRUPT_STREAM)

The Stream ID field of the Stream Header is set to ‘ CRPT’ to indicate the previous data stream isa Corrupt Stream The
Corrupt Stream is used in conjunction with the MTF_CFIL DBLK to identify which streams are corrupt. The MTF_CFIL
DBLK has alimitation and can only identify a single data stream as corrupt. The Corrupt Stream has aone to one
correspondence with corrupt data streams. The corrupt stream does not have any Stream Data.

6.2.1.6 Pad Stream (PAD_STREAM)

The Stream ID field of the Stream Header is set to *SPAD’ to indicate a Pad Stream The Pad Stream is always the last
data stream associated with aDBLK. The Pad Stream is used to indicate no additional data stream for the associated
DBLK and brings alignment to a Format Logical Block where the next DBLK or filemark is placed. If the Pad Stream
precedes afilemark, the Pad Stream must also bring alignment to a Physical Block. The Stream Data of the Pad Stream is
set to NULL (binary zero) to maintain a C2 security level.

Note: Early drafts of the MTF Version 1.0 specification did not require the Pad Stream. In thiscase the Offset To Next
Event field of the MTF_DB_HDR could point to a DBLK and not a Sream Header. In this case you should read
the size of a Stream Header and verify the checksum. If the checksum matches make the assumption it is a Stream
Header. If the checksum does not match continue reading up to the size of aMTF_DB_HDR and check the
checksum. If the checksum matches make the assumption itisaDBLK. If the checksum does not match use error
recovery to try and find the next DBLK.

6.2.1.7 Sparse Stream (SPARSE_STREAM)

The Stream ID field of the Stream Header is set to * SPAR’ to indicate a Sparse Stream A Sparse Frame Header
immediately follows the stream header and isincluded in the Stream Length. The Sparse Frame Header specifies the offset
within the sparsefile. Thelength of the sparse datais the Stream L ength minus the size of the Sparse Frame Header.

Offset Content Type Size

0 Oh Offset within sparse file. UINT64 8 bytes

Structure17. Sparse Frame Header

Copyright 1997 Seagate Software, Inc.
9/15/00 Page 63

Data Streams

4 byte Stream 4 byte Stream
Alignments Alignment
\ 4y) \
FILE I SIS |Stream Data S |Stream Data {
DBLK | HiIH [Header |Sparse Data H Header|8parse Data }
v
/ A\ /
STAN SPAR SPAR
Stream Header Stream Header Stream Header

STREAM_IS_SPARSE

Figure20. Windows 95 Registry Stream

6.2.2 Windows NT Stream Data

This section describes Data Streams that are specific to the Windows NT Operating System. Most NT streams are sourced
using the Win32 BackupRead API. Preceding the dataisaWin32 stream header (WIN32_STREAM_ID) that specifiesthe
type of datathat follows. The Win32 stream header isused to fill out the information in the MTF Stream Header, but should

not be written as part of the Stream Data.

Table20. Windows NT Stream Data Types

Name Description Value
STANDARD_DATA_STREAM See definition above for Windows NT issues. ‘STAN’
SPARSE_STREAM Windows NT sparse files ‘SPAR’

BACKUP_SPARSE_DATA use the platform

independent SPARSE_STREAM.
NTFS_ALT_STREAM NT alternate data stream. 'ADAT'
NTFS_EA STREAM NT extended attribute data stream. 'NTEA'
NT_SECURITY_STREAM NT specific security data stream. 'NACL'
NT_ENCRYPTED_STREAM NT encrypted data stream. ‘NTED’
NT_QUOTA_STREAM NT quota data stream. ‘NTQU’
NT_PROPERTY_STREAM NT property data stream. ‘NTPR’
NT_REPARSE_STREAM NT reparse data stream. ‘NTRP’
NT_OBJECT_ID_STREAM NT object ID data stream. ‘NTOT

6.2.2.1 Windows NT Alternate Data (NTFS_ALT_STREAM)

The Stream ID field of the Stream Header isset to ‘ADAT’ to indicate Windows NT Alternate Data. For Windows NT
Alternate Data, the dwStreamld field of the WIN32_STREAM _ID field is set to a value of

BACKUP_ALTERNATE_DATA.

Windows NT Alternate Data streams require some special processingin MTF. The MTF Stream Header for these streams
iswritten as usual, with the stream type being ‘ADAT’. However, a4 byte stream name size field and the stream name
should precede the actual datain the MTF data stream, with the 4 bytes for the size field and the size it contains added to
the total size of the data stored in the MTF Stream Header. The Win32 stream header for these streams contains a stream
name size field, and is followed by the stream name. The string type for this nameis always UNICODE, and the sizeisthe
sizein bytes, not including a null terminator.

Page 64

Copyright 1997 Seagate Software, Inc.

10/1/98

Data Streams

ADAT Name

Stream Header |Size |Name Stream Data

Y
Stream Length = sizeof (Name Size)
+value in Name Size
+ size of Stream Data

6.2.2.2 Windows NT Extended Attribute Data (NTFS_EA_STREAM)

The Stream 1D field of the Stream Header isset to ‘NTEA’ to indicate Windows NT Extended Attribute Data. For
Windows NT Extended Attribute Data, the dwStreamld field of the WIN32_STREAM _ID field is set to avalue of
BACKUP_EA DATA.

6.2.2.3 Windows NT Security Data (NT_SECURITY_STREAM)

The Stream ID field of the Stream Header is set to ‘NACL’ to indicate Windows NT Security Data. For Windows NT
Security Data, the dwStreamld field of the WIN32_STREAM _ID field isset to avalue of BACKUP_SECURITY_DATA.

Note: The Stream File System Attributes field of the Stream Header must have the STREAM_CONTAINS _SECURITY
bit set.

6.2.2.4 Windows NT Encrypted Data (NT_ENCRYPTED_STREAM)

The Stream ID field of the Stream Header is set to ‘NTED’ to indicate Windows NT Encrypted Data. Data obtained
through Windows NT Encryption APIs and not BackupRead.

6.2.2.5 Windows NT Quota Data (NT_QUOTA_STREAM)

The Stream ID field of the StreamHeader is set to ‘NTQU’ to indicate Windows NT Quota Data. Data obtained through
Windows NT Quota APl and not BackupRead.

6.2.2.6 Windows NT Property Data (NT_PROPERTY_STREAM)

The Stream ID field of the Stream Header is set to ‘NTPR’ to indicate Windows NT Property Data. For Windows NT
Property Data, the dwStreamld field of the WIN32_STREAM _ID field is set to avalue of BACKUP_PROPERTY_DATA.

6.2.2.7 Windows NT Reparse Data (NT_REPARSE_STREAM)

The Stream ID field of the Stream Header is set to *NTRP to indicate Windows NT Reparse Data. For Windows NT
Reparse Data, the dwStreamld field of the WIN32_STREAM _ID field is set to avalue of BACKUP_REPARSE_DATA.

6.2.2.8 Windows NT Object ID Data (NT_OBJECT_ID_STREAM)

The Stream ID field of the Stream Header isset to ‘NTOI’ to indicate Windows NT Object ID Data. For WindowsNT
Object ID Data, the dwStreamld field of the WIN32_STREAM _ID field is set to avalue of BACKUP_OBJECT _ID.

6.2.3 Windows 95 Stream Data

This section describes Data Streams that are specific to the Windows 95 Operating System.

6.2.3.1 Windows 95 Registry Stream (WIN95_REGISTRY_STREAM)

The Stream ID field of the Stream Header is set to ‘ GERC’ to indicate a Windows 95 Registry Stream The Windows 95
Registry Streams are associated with the root directory (MTF_DIRB DBLK) of the volume in which the Windows 95
Operating System resides. The HKEY_LOCAL_MACHINE and HKEY _USERS are stored in separate Windows 95
Registry Streams. The Stream Length field of the Stream Header is set to the size of the GERC_HEADER plus the length
of the HKEY XXX data.

Copyright 1997 Seagate Software, Inc.
9/15/00 Page 65

Data Streams

4 byte Stream 4 byte Stream
Alignment Alignment
\ I 4 \
VOLB [DIRB || S|Stream Data S| Stream Data

DBLK [DBLK |fH Header|HKEY_LOCAL_MACHINE Data f|H Header|HKEY_USER Data }
\

A /

Assume SPAD GERC GERC
Data Stream Stream Header Stream Header

Figure21l. Windows 95 Registry Stream

The GERC_HEADER is a 260 byte header that contains the key root handle and key name.

Offset Content Type Size
0 Oh Key ID UINT32 4 bytes
4 4h Key Name UINTS8 [256] 256 bytes

Structure 18. Windows 95 Registry Stream

Key ID {4 bytes}
TheKey ID isafour bytefield that identifies the type of registry datain the Stream Data. The Key ID field must be set to
HKEY_LOCAL_MACHINE or HKEY_USERS.

Key Name {4 bytes}

The Key Name is a null-terminated string containing the name of the key in the Stream Data. If the Key Name string is zero
length then they key being backed up isthe root key itself.

6.2.4 NetWare Stream Data
This section describes Data Streams that are specific to the Novell NetWare Operating System.

Table21. NetWare Stream Data Types

Name Description Value
NETWARE_386_TRUSTEE_STREAM | NetWare trustee information 'N386'
NETWARE_BINDERY_STREAM NetWare bindery ‘NBND’
NETWARE_SMS_DATA_STREAM NetWare SMS data format ‘SMSD’

6.2.4.1 NetWare Trustee Information (NETWARE_386_TRUSTEE_STREAM)

The Stream ID field of the Stream Header is set to *N386’ to indicate NetWare 286 or NetWare 386 Trustee Information.
The stream is a concatenation of the trustees for the file or directory in the format of arepeating sequence of a DWORD
representing the trustees ID and a WORD representing the rights mask, whether maximum (NetWare 2.x) or inherited
(NetWare 3.x).

The TRUSTEE_INFO is a6 byte structure that contains the trustee ID and trustee rights mask.

Copyright 1997 Seagate Software, Inc.
Page 66 10/1/98

Data Streams

Offset Content Type Size
0 Oh Trustee ID UINT32 4 bytes
14 Eh Trustee Rights Mask UINT16 2 bytes

Structure19. NetWare Trustee Info

6.2.4.2 NetWare Bindery (NETWARE_BINDERY_STREAM)

The Stream ID field of the Stream Header is set to ‘NBND’ to indicate NetWare Bindery. The NetWare Bindery stream is
used for both NetWare 286 and NetWare 386. The NetWare Bindery Stream is associated with the root directory
(MTF_DIRB DBLK) of the SY Svolume. The Stream Data consists of one ore more BINDERY _HEADER structures and
corresponding bindery source file data.

4 byte Stream 4 byte Stream
ﬁllgnment Alignment
\ y \
. VOLB || S|Stream Data DIRB [|S|Stream Data é
DBLK |H DBLK |[H[Header | Bindery Source File Dat| Header | Bindery Source File I:%
\ \
SPAD NBND
Stream Header Stream Header

Figure22. NetWare Bindery Stream

The BINDRY_HEADER isa 18 byte header that contains the bindery source file name and bindery source file size.

Offset Content Type Size
0 Oh Bindery Source File Name UINTS [14] 14 bytes
14 Eh Bindery Source File Size UINT32 4 bytes

Structure20. NetWare Bindery Stream

Bindery Sour ce File Name {14 bytes}
The Bindery Source File Name is a null-terminated string of the bindery source file (e.g., NET$BND.SYS).

Bindery Source File Size {4 bytes}
The Bindery Source File Szeisafour byte field containing the size of the bindery sourcefile.

6.2.4.3 NetWare SMS Data Format (NETWARE_SMS_DATA_STREAM)

The Stream ID field of the Stream Header is set to * SMSD’ to indicate NetWare SMSData Format. The SMS datais stored
without modification.

6.25 0OS/2 Stream Data

This section describes Data Streams that are specific to the OS/2 Operating System.

Table22. OS/2 Stream Data Types

Name Description Value

Copyright 1997 Seagate Software, Inc.

9/15/00 Page 67

Data Streams

(to be written)

HPFS_SECURITY_STREAM HPFS security data stream. 'OACL'
HPFS_EA_STREAM HPFS extended attribute data stream. 'O2EA
6.2.6 Macintosh Stream Data
This section describes Data Streams that are specific to the Macintosh Operating System.
Table23. Macintosh Stream Data Types
Name Description Value
MAC_RESOURCE_STREAM Macintosh resource fork stream. 'MRSC'
MAC_PRIVILEGE_STREAM Macintosh privilege stream. '‘MPRV'
MAC_INFO_STREAM Macintosh Get Info stream. 'MINF'

6.2.6.1 Macintosh Resource Stream (MAC_RESOURCE_STREAM)

The Stream ID field of the Stream Header is set to ‘MRSC’ to indicate Macintosh Resource Stream The Macintosh
Resource Stream contains the item’ s resource fork.

6.2.6.2 Macintosh Privilege Stream (MAC_PRIVILEGE_STREAM)
The Stream ID field of the Sream Header is set to *“MPRV’ to indicate Macintosh Privilege Stream The Macintosh

Privilege Stream contains the privilege information for directories (foreign privilege systems, contain filesaswell). The
first entry, "Foreign Privilege Model", contains O (Indicating Native Privileges) or else anumber that identifies the foreign

file system privilege model (only A/UX has been defined so far).

Native Privileges use the following structure:

Offset | Content Type Size Apple OS Equivalent

0 Foreign Privilege Model (zero) | UINT8[2] 2bytes | GetVolParmsinfoBuffer .
vMForeignPriviD

2 Access Rights UINT8 [4] 4 bytes | AccessParam . ioACAccess

6 Userl DNumber MAC_UINT32 | 4bytes | AccessParam . ioACOwnerlD

10 User Name MAC_STR31 32 bytes | PBHMapID of user id
number, yielding ObjParam .
ioObjNamePtr

42 Group ID Number MAC _UINT32 | 4bytes | AccessParam . ioACGrouplD

46 Group Name MAC_STR31 32 bytes | PBHMapID of group id
number, yielding ObjParam .
ioObjNamePtr

Structure21. Macintosh Native Privilege

Foreign Privileges use the following structure;

Page 68

Copyright 1997 Seagate Software, Inc.
10/1/98

Data Streams

Offset | Content Type Size Apple OS Equivalent
0 Foreign Privilege Model (non- | UINT8[2] 2bytes | GetVolParmsinfoBuffer .
zero) vMForeignPriviD
2 Foreign Privilege Infol UINT8 [4] 4 bytes | ForeignPrivParam.
ioForeignPrivinfol
6 Foreign Privilege Info2 UINT8 [4] 4 bytes | ForeignPrivParam.
ioForeignPrivinfo2
10 Foreign Privilege Info3 UINT8[4] 4 bytes | ForeignPrivParam .
ioForeignPrivinfo3
14 Foreign Privilege Info4 UINT8[4] 4 bytes | ForeignPrivParam .
ioForeignPrivinfo4
18 Foreign Privilege Variable- UINT8[n] nbytes | ForeignPrivParam .
Length Info ioForeignPrivBuffer- length is
ForeignPrivParam .
ioForeignPrivRegCount

Structure22. Macintosh Foreign Privilege

Itisallowed (but not required) for a backup application to include both the Native and Foreign versions of thisinformation
for agiven directory by including two MAC_PRIVILEGE_STREAMS after itsMTF_DIR DBLK. Appledoes not
currently support Native permissionsfor files.

6.2.6.3 Macintosh Info Stream (MAC_INFO_STREAM)

The Stream ID field of the Stream Header is set to ‘MINF' to indicate Macintosh Info Stream The Macintosh Info Stream
contains the Get Info comments entered by auser for agiven directory or file. (Comments entered for aVVolume are
actually implemented as comments for the volume'sroot directory.) The stream need not be included if there is no user
comment for an item.

Offset | Content Type Size Apple OS Equivalent
0 Comment Length | MAC_UINTS8 1 byte DTPBRec.ioDTBuffer [0]
1 Comment Text UINT8[n] n bytes & DTPBRec.ioDTBuffer [1]

Structure23. Macintosh Info

6.3 Variable Length Streams

Variable Length Streams are used to segment stream data. Each segment of the stream data is encapsulated by a Stream
Header. Every Stream Header used to make up avariable length stream hasthe STREAM_VARIABLE bit set in the Stream
Media Format Attributesfield. The last Stream Header hasthe STREAM_VAR_END bit set in the Stream Media Format

Attributesfield.

Copyright 1997 Seagate Software, Inc.

9/15/00

Page 69

Data Streams

4 byte Stream 4 byte Stream 4 byte Stream
Alignment Alignment Alignment
__+ { !
FILE ||S [Stream Data S [Stream Data S [Stream Data
BLK [[H |segmenta H|segmentb H|segmentc
\ \ STAN \ STAN N STAN
Stream Lenght =a Stream Lenght =b Stream Lenght =c
STREAM_VARIABLE STREAM_VARIABLE STREAM_VARIABLE

STREAM_VAR_END

Figure23. Variable Length Streams

6.4 Data Compression

MTF supports the compression of stream data with the exception of the Pad, Set Map, and File/Directory detail streams. When
compression is enabled, all DBLKswithin abackup set have the MTF_COMPRESSION bit set in the Block Attributes field of

the MTF_DB_HDR and the Software Compression Algorithmfield of the MTF_SSET DBLK is set to the appropriate software
compression algorithm ID. Only one software compression algorithm can be used per backup set.

Note: The MTF_COMPRESSION bit and Software Compression Algorithm field is set even if no streams are compressed.

To compress stream data, the Sream Header must have the STREAM_COMPRESSED bit of the Stream Media Format field
set and the Data Compression Algorithm field set to the same ID stored in the Software Compression Algorithmfield of the
MTF_DB_HDR. Once a Stream Header is set to indicate compression is active, all stream data must be encapsul ated by
Compression Frame Headers. Due to the nature of software compression, the streams will most likely be variable length.

When a stream is to be written with both data compression and data encryption, the data would be compressed first and then
encrypted. Therefore, when reading a stream that is compressed and encrypted, the datais decrypted first and then
decompressed.

6.4.1 Compression Frame Header (MTF_CMP_HDR)

The Compression Frame Header is used to encapsul ate compressed stream data and provides all information necessary for
decompression. It must also provide the total number of uncompressed data bytes from the current compression frame header
through the end of the stream if available.

Offset Field Name Type Size
0 00h Compression Header 1D UINT16 2 bytes
2 02h Stream Media Format Attributes UINT16 2 bytes
4 04h Remaining Stream Size UINT64 8 bytes
12 0Ch Uncompressed Size UINT32 4 bytes
16 10h Compressed Size UINT32 4 bytes
20 15h Sequence Number UINT8 1 byte
21 16h reserved 1 byte
22 17h Checksum UINT16 2 bytes

Structure24. Compression Frame Header (MTF_CMP_HDR)

Copyright 1997 Seagate Software, Inc.
Page 70 10/1/98

Data Streams

Compression Header ID {2 bytes}

The Compression Header ID field identifies this as the start of a compression frame header. The compression header ID field
contains atwo character ASCI| signature ‘ FH' (0x4846).

Stream Media Format Attributes

The Stream Media Format Attributes field contains the original stream mediaformat attributes from the Stream Header prior to
compression. After decompression, the STREAM_VARIABLE hit in the stream media format attributes can be used to mimic
the original stream state.

Remaining Stream Size
The Remaining Stream Size field contains the uncompressed stream length in the first compression frame header. In
subsequent compression frame headers this field is computed by taking the remaining stream size field from the previous

compression frame header and subtracting the uncompressed size from the previous compression frame header. |If the total
uncompressed stream length is unavailable, thisfield is set to zero.

Uncompressed Size
The Uncompressed Size field contains the total number of uncompressed bytes encapsulated by this compression frame header.

Compressed Size

The Compressed Size field contains the total number of compressed bytes encapsul ated by this compression frame header.
Sometimes the size of compressed datais grater than that of the uncompressed data. 1n this case, the uncompressed datais
encapsulated by the compression frame header and not the compressed data and the compressed sizeis set to equal the
uncompressed size.

Sequence Number

The Sequence Number field starts with avalue of 1 for the first compression frame header and is incremented in each
subsequent compression frame header. Because the Sequence Number field is 1 byte in size, the sequence number will wrap
every 256 frames.

Checksum

The Checksumfield contains aword-wise XOR sum of all fields from Compression Header ID to the Checksum field. Thetwo
byte Checksum field is not included in the checksum. Thisfield is used to verify that avalid Compression Frame Header is
being processed during read operations.

6.5 Data Encryption

MTF supports the encryption of stream data with the exception of the Pad, Set Map, and File/Directory detail streams. When
compression is enabled, all DBLKswithin abackup set havethe MTF_ENCRY PTION bit set in the Block Attributesfield of
the MTF_DB_HDR. Only one software encryption algorithm can be used per backup set.

To encrypt stream data, the Stream Header must have the STREAM_ENCRY PTED hit of the Stream Media Format field set
and the Data Encryption Algorithm field set. Once a Stream Header is set to indicate encryption is active, all stream data must
be encapsulated by Encryption Frame Headers.

When a stream is to be written with both data compression and data encryption, the data would be compressed first and then
encrypted. Therefore, when reading a stream that is compressed and encrypted, the data is decrypted first and then
decompressed.

Note: When stream datais both compressed and encrypted, the Compression Frame Headers are encrypted asif they were
stream data.

Copyright 1997 Seagate Software, Inc.
9/15/00 Page 71

Data Streams

6.5.1 Encryption Frame Header (MTF_ENC_HDR)

The Encryption Frame Header is used to encapsul ate encrypted stream data and provides all information necessary for
decryption. It must also provide the total number of unencrypted data bytes from the current encryption frame header through
the end of the stream if available.

Offset Field Name Type Size
0 00h Encryption Header ID UINT16 2 bytes
2 02h Stream Media Format Attributes UINT16 2 bytes
4 04h Remaining Stream Size UINT64 8 bytes
12 0Ch Unencrypted Size UINT32 4 bytes
16 10h Encrypted Size UINT32 4 bytes
20 15h Sequence Number UINT8 1 byte
21 16h reserved 1 byte
22 17h Checksum UINT16 2 bytes

Structure25. Encryption Frame Header (MTF_ENC_HDR)

Encryption Header ID {2 bytes}

The Encryption Header ID field identifies this asthe start of a encryption frame header. The encryption header ID field
contains atwo character ASCII signature ‘EH’ (0x4845).

Stream Media Format Attributes

The Stream Media Format Attributes field contains the original stream mediaformat attributes from the Stream Header prior to
encryption. After decryption, the STREAM_VARIABLE bit in the stream mediaformat attributes can be used to mimic the
original stream state.

Remaining Stream Size

The Remaining Stream Size field contains the unencrypted stream length in the first encryption frame header. In subsequent
encryption frame headersthisfield is computed by taking the remaining stream size field from the previous encryption frame
header and subtracting the unencrypted size from the previous encryption frame header. If the total unencrypted stream length
isunavailable, thisfield is set to zero.

Unencrypted Size
The Unencrypted Size field contains the total number of unencrypted bytes encapsulated by this encryption frame header.

Encrypted Size
The Encrypted Size field contains the total number of encrypted bytes encapsulated by this encryption frame header.

Sequence Number

The Sequence Number field starts with avalue of 1 for the first encryption frame header and isincremented in each subsequent

encryption frame header. Because the Sequence Number field is 1 bytein size, the sequence number will wrap every 256
frames.

Copyright 1997 Seagate Software, Inc.
Page 72 10/1/98

Data Streams

Checksum

The Checksumfield contains aword-wise XOR sum of all fields from Encryption Header ID to the Checksum field. The two
byte Checksum field is not included in the checksum. Thisfield is used to verify that avalid Compression Frame Header is
being processed during read operations.

Copyright 1997 Seagate Software, Inc.
9/15/00 Page 73

Media Based Catalog

7. Media Based Catalog

This section provides detailed information about Media Based Catalogs (MBC). A MediaBased Catalog is comprised of two
parts. Thefirstisa Set Map which contains cumulative information about each backup set in aMedia Family. Thesecondisa
File/Directory Detail which contains information specific to a backup set. Both the Set Map and File/Directory Detail are
stored as Data Streams associated with the MTF_ESET DBLK.

Two different implementations of the Media Based Catalog are defined in MTF Version 1.00a. Thefirstis“Type1” and the

second is“Type 2. Either catalog type may be used but must be consistent within aMedia Family. The type of MBC being

used must be defined in the Media Based Catalog Type field of the MTF_TAPE DBLK. The version of the particular catalog
type can be defined in the MBC Version field of the MTF_SSET DBLK.

7.1 Control Bits

Control bitswithinthe MTF_DB_HDR attribute field of certain DBLK's are used to determine whether an attempt will be made
to write the FDD and Set Map for a given Data Set and Media Family. The table below describes the bits that are used and
their meanings. Pleaserefer to the description of the MTF_DB_HDR for more information on the use of the attribute field.

Table24. Media Based Catalog Control Bits

Bit Name Description Value

MTF_SET_MAP_EXISTS Set in the MTF_TAPE DBLK to indicate that Set Map streams BIT16
must be written after each Data Set in the Media Family.

MTF_FDD_ALLOWED Setin the MTF_TAPE DBLK to indicate that FDD streams may BIT17
be written after each Data Set in the Media Family. This bit
being set does not require that the FDD be written for each
Data Set.

MTF_FDD_EXISTS Setin the MTF_SSET DBLK to indicate that an FDD stream BIT16
will be written for that Data Set. If the FDD is not written the
MTF_FDD_ABORTED must be set in the MTF_ESET.

MTF_NO_ESET_PBA Setin the MTF_EOTM if no Data Set ends on this media, and BIT16
therefore, no Set Map associated with MTF_ESET.

MTF_INVALID _ESET PBA | Setinthe MTF_EOTM if the PBA of the MTF_ESET is invalid BIT17
because the device doesn't support physical block addressing.

Copyright 1997 Seagate Software, Inc.
9/15/00 Page 75

Media Based Catalog

7.2 Status Bits

Status bits within the MTF_DB_HDR attribute field of certain DBLKs are used to determine whether an attempt to write the
FDD and Set Map was successful. The table below describes the bits that are used and their meanings. Please refer to the
description of the MTF_DB_HDR for more information on the use of the attribute field.

Table25. Media Based Catalog Status Bits

Bit Name Description Value

MTF_FDD_ABORTED Setin the second MTF_ESET to indicate that the FDD stream BIT16
was not written due to some error.

MTF_END_OF_FAMILY Set in the second MTF_ESET to indicate that the Set Map BIT17

stream was not written due to some error. Note that this
implies that no further Data Sets may be appended to this
Media Family.

Copyright 1997 Seagate Software, Inc.
Page 76 10/1/98

Media Based Catalog

7.3 Type 1 MBC

This section describes Type 1 MBC . An overview of MediaBased Catal ogs can be found in Section 3 - Format Description.
Type 1 MBC includes both File/Directory Detail (FDD) and Set Map. Both are Data Streams associated with the MTF_ESET
DBLK. The FDD includes entries for the MTF_VOLB, MTF_DIRB and MTF_FILE DBLKsin agiven Data Set. Typel
MBC isdesigned to allow entries for other DBLK types, including vendor specific types, to be included in the FDD in such a
way that any application which does not recognize agive entry can easily skip it. However, only the DBLKs mentioned above
are discussed here.

To create Type 1 MBC, the Media Based Catalog Type field of the MTF_TAPE DBLK isset to avalue of 1 and the Media
Catalog Version field of the MTF_SSET DBLK is set to avalue of 2.

7.3.1 Physical Layout

Both the Set Map and File/Directory Detail are written as data streams associated with the MTF_ESET, and aligned on
Physical Block boundaries to allow applicationsto seek to them directly. The FDD iswritten first, and the Set Map follows. It
is allowed to write both an FDD and Set Map stream, or only a Set Map stream for any given Data Set, but writing only an
FDD stream isnot allowed. Note that the FDD can be added selectively on aper Data Set basis, but the Set Map must be
maintained for each Data Set as it is appended to the Media Family.

A second MTF_ESET DBLK iswritten following the Set Map stream on the next Physical Block boundary, and thisis
followed by the second filemark which closes out the Data Set. The Physical Block Address (PBA) of the FDD and Set Map
are contained in two 8 byte fieldsin the second MTF_ESET DBLK. Another two byte field provides the media sequence
number where the FDD begins. Please refer to the MTF_ESET DBLK description for more information on these fields.

Thelast entry in the FDD isaspecial “end entry” which allows the total size of the FDD stream to be padded to insure the Set
Map stream begins on a Physical Block boundary. The gap between the end of the Set Map and the second MTF_ESET is
covered using a Pad Stream, asisthe gap between the second MTF_ESET and the File Mark.

When a Media Family spans multiple media, the MTF_EOTM DBLK at the end of each full medium contains the PBA of the
second MTF_ESET associated with the last Data Set which was completed on that medium.

Thefirst Reserved for MBCfield of the second MTF_ESET is used to store the physical block address of the TFDD’ Stream
Header. The second Reserved for MBC field of the second MTF_ESET is used to store the physical block address of the
‘TSMP Stream Header .

The following figureillustrates the physical positioning of the catalogs.

Stream Alignment Stream Alignment 4 byte Stream
to Physical Block to Physical Block Alignment
ESET S|FDD S|SetMap [IS ESET
DBLK H| Data H[pam [R|S"e™ D |ppiy
/ / /
TFDD TSMP SPAD
Stream Header Stream Header Stream Header

Figure24. Physical layout of Type 1 MBC FDD and Set Map Streams

7.3.2 File/Directory Detall

The File/Directory Detail (FDD) is used to describe the volume, directory and file tree belonging to a particular Data Set. The
FDD can be used to quickly determine where individual volumes, directories and files are located on the media. The FDD can
be thought of as an abbreviated copy of the DBLKsin the Data Set without the data streams that follow. Only the information
necessary to locate and obtain important information about individual itemsin the Data Set is put into the FDD stream records
that describe each DBLK.

Copyright 1997 Seagate Software, Inc.
9/15/00 Page 77

Media Based Catalog

7.3.2.1 FDD Physical Layout

The FDD, like the Set Map, begins on a Physical Block boundary. The FDD iswritten as a stream with the Stream ID field
of the Sream Header issetto ‘ TFDD’. Please refer to the Data Stream section for further information. The MTF Stream
Header identifies the stream as being the FDD and is followed by a series of FDD entries.

There arefour types of FDD entries discussed here: MTF_FDD_VOLB, MTF_FDD_DIRB, MTF_FDD_FILE and
MTF_FDD_FEND. Each entry within the FDD begins with acommon header (MTF_FDD_HDR), and isfollowed by
several fields of information. Thisisvery similar to theway DBLKsusethe MTF_DB_HDR at the beginning. Every FDD

entry has a corresponding DBLK structurein the Data Set. The number and order of the FDD entriesin the FDD match the
order of the DBLKsin the Data Set which they represent, with the exception of “continuation” DBLKswritten for spanning

situations. Thefinal entry in the FDD isthe FEND entry.

7.3.2.2 FDD Common Header

The File/Directory Detail Common Header is a 36 byte field placed at the beginning of every FDD entry. The FDD
Common Header consists of fields specifying the length of the entry, itstype, the mediait belongsto, and other pieces of
information that are often duplicates of the corresponding DBLK that the FDD entry corresponds to.

Offset Field Name Type Size
0 Oh LENGTH UINT16 2 bytes
2 2h TYPE UINT8[4] 4 bytes
6 6h MEDIA_SEQ_NUMBER UINT16 2 bytes
8 8h COMMON_BLOCK_ATTRIBUTES UINT32 4 bytes
12 0OCh FORMAT_LOGICAL_ADDRESS UINT64 8 bytes
20 14h DISPLAYABLE_SIZE UINT64 8 bytes
28 1Ch LINK INT32 4 byte
32 20h OS_ID UINT8 1 byte
33 21h OS_VERSION UINT8 1 byte
34 22h STRING_TYPE UINT8 1 byte
35 23h PAD UINT8 1 byte

Structure26. Type1l MBC FDD Common Header (MTF_FDD_HDR)

LENGTH {2 bytes}

The LENGTH field indicates the size of this FDD record stream. This should equal the size of the corresponding
MTF_FDD_FILE, MTF_FDD_DIRB, MTF_FDD_VOLB, or MTF_FDD_FEND record stream plus the size of any
strings appended to the structure. Appended strings include names of machines, volumes, directories, and files that
follow the formal field structure of the specific FDD entry.

TYPE {4 bytes}

The TYPE field indicates which MTF_FDD record structure this header belongsto. The TYPE should be "VOLB",
"DIRB", "FILE", or "FEND." If the block is of type"FEND", the remaining fieldsin the block are undefined and
should be set to zero.

MEDIA_SEQ NUMBER {2 bytes}
The MEDIA_SEQ _NUMBER identifies the mediain the Media Family to which this FDD belongs.

Page 78

Copyright 1997 Seagate Software, Inc.
10/1/98

Media Based Catalog

COMMON_BLOCK_ATTRIBUTES{4 bytes}

The COMMON_BLOCK_ATTRIBUTESfield should match the corresponding field in the MTF_DB_HDR of the
DBLK inthe Data Set. Therefore, information about continuation, compression, end of media, variable length data
streams, etc. can be found from these attribute bits.

FORMAT LOGICAL ADDRESS{8 bytes}

The FORMAT LOGICAL ADDRESSfield matches the corresponding field inthe MTF_DB_HDR of the
corresponding DBLK inthe Data Set. Thisvalueis used to locate the DBLK corresponding to this FDD Stream
entry.

DISPLAYABLE_SIZE {8 bytes}

The DISPLAYABLE_SIZE field matches the corresponding field in the MTF_DB_HDR of the DBLK represented by
thisFDD entry. Inthisway, an application can quickly determine and display the size of all thefilesin a Data Set
simply by looking at thisfield in the FDD entries.

LINK {4 bytes}

The LINK field indicates the offset of another FDD entry from the beginning of the MTF_FDD_HDR structure. LINK
represents different offsets depending on which FDD entry it isbeing used in.

- Fileentries The stream offset of their parent directory.
- Volumeentries The stream offset of the next volume entry, or zero for thelast MTF_FDD_VOLB entry.

- Directory entries The stream offset of the next sibling directory (i.e. next directory having same parent), or
zero for the last sibling under any given parent.

OS ID {1 byte}
The OS ID field is another field that matches the corresponding field inthe MTF_DB_HDR of the DBLK in the Data
Set.

OS VERSION {1 byte}
The OS VERSION field also matches the corresponding field inthe MTF_DB_HDR of the DBLK in the Data Set.

STRING_TYPE {1 byte}

The STRING_TYPE field matches the corresponding field in the MTF_DB_HDR of the DBLK represented by this
FDD entry.

PAD {1 byte}

The PAD field is simply a one byte pad filled with zeroes to pad out to the next four byte stream alignment boundary
for improved performance on RISC processors using MTF. The remaining fields of the specific FDD entry begin on
this boundary.

7.3.2.3 FDD Entries

There are four record types used within the FDD. Three of them represent the volume, directory and file objects found
within the Data Set that this FDD describes. Many of the datafieldsin these FDD entries contain duplicate copies of data
foundinthe MTF_VOLB, MTF_DIRB and MTF_FILE DBLK fields. A fourth FDD entry called the FEND entry marks
the end of the FDD. The four FDD entry types are:

Table26. Typel MBC FDD Entry Types

Name Description Value

MTF_FDD_VOLB FDD Volume Entry ‘VOLB'

Copyright 1997 Seagate Software, Inc.
9/15/00 Page 79

Media Based Catalog

MTF_FDD_DIRB FDD Directory Entry 'DIRB'
MTF_FDD_FILE FDD File Entry ‘FILE’
MTF_FDD_FEND End of FDD Entry 'FEND’

7.3.23.1 FDD Volume Entry (MTF_FDD_VOLB)

The FDD Volume Entry corresponds with the VOLB DBLK it representsin the Data Set. Many of the datafields found in this
structure contain copies of the datafound in the VOLB DBLK fields.

Offset Field Name Type Size
0 Oh FDD Common Header MTF_FDD_HDR 36 bytes
36 24h VOLB Attributes UINT32 4 bytes
40 28h Device Name MTF_TAPE_ADDRESS 4 bytes
44 2Ch Volume Name MTF_TAPE_ADDRESS 4 bytes
48 30h Machine Name MTF_TAPE_ADDRESS 4 bytes
52 34h OS_SPECIFIC_DATA MTF_TAPE_ADDRESS 4 bytes
57 38h Media Write Date MTF_DATE_TIME 5 bytes

Structure27. Typel MBC FDD Volume Entry (MTF_FDD_VOLB)

FDD Common Header {36 bytes}

The FDD Common Header field containsthe 36 byte MTF_FDD_HDR structure that is found at the beginning of
every FDD entry Stream. This structure was described on the preceding pages. The TYPE field within the
MTF_FDD_HDR structure will besetto‘VOLB’.

VOLB Attributes {4 bytes}

The VOLB Attributes field is the same as that found in the corresponding MTF_VOLB DBLK in the Data Set. Refer
tothe MTF_VOLB DBLK description for information on the bitsin thisfield.

Device Name {4 bytes}

The Device Name field uses the four byte MTF_TAPE_ADDRESS low level structure. Thisfield isthe same asthe
corresponding Device Namefieldinthe MTF_VOLB DBLK of the Data Set, with one exception: The second two
bytes used for the Offset field is an offset from the start of thisMTF_FDD_V OLB entry to the start of the string
containing the Device Name.

Volume Name {4 bytes}

The Volume Name field also uses the four byte MTF_TAPE_ADDRESS structure and is the same as the
corresponding Volume Name field in the MTF_VOLB DBLK. The Offset field in the MTF_TAPE_ADDRESS low
level structure is an offset from the start of thisMTF_FDD_VOLB entry to the start of the string containing the
Volume Name.

Machine Name {4 bytes}

The Machine Name field also uses the four byte MTF_TAPE_ADDRESS structure and is the same as the Machine
Name field in the corresponding MTF_VOLB DBLK. The Offset field inthe MTF_TAPE_ADDRESS structureis an
offset from the start of thisMTF_FDD_VOLB entry to the start of the string containing the Machine Name.

Page 80

Copyright 1997 Seagate Software, Inc.
10/1/98

Media Based Catalog

OS SPECIFIC_DATA {4 bytes}

The OS Specific Data field uses the four byte MTF_TAPE_ADDRESS structure. Its contents are either zero or the
same as the corresponding OS Specific Data field in the MTF_DB_HDR structure within the MTF_VOLB DBLK.
The Offset field contains the offset from the start of thisMTF_FDD_VOLB entry to the string containing a copy of
the OS information used for the corresponding MTF_VOLB DBLK written to media.

Media Write Date {5 bytes}

The Media Write Date field usesthe five byte MTF_DATE_TIME low level structure and is the same asthe Media
Write Date field in the corresponding MTF_VOLB DBLK.

7.32.3.2 FDD Directory Entry (MTF_FDD_DIRB)

The FDD Directory Entry corresponds with the MTF_DIRB DBLK it representsin the Data Set. Many of the datafields found
in this structure contain copies of the datafound inthe MTF_DIRB DBLK fields.

Offset Field Name Type Size
0 Oh FDD Common Header | MBC_GEN_HDR 36 bytes
36 24h Last Modification Date MTF_DATE_TIME 5 bytes
41 29h Creation Date MTF_DATE_TIME 5 bytes
46 2Eh Backup Date MTF_DATE_TIME 5 bytes
51 33h Last Access Date MTF_DATE_TIME 5 bytes
56 38h DIRB Attributes UINT32 4 bytes
60 3Ch Directory Name MTF_TAPE_ADDRESS 4 bytes
64 40h OS_SPECIFIC_DATA | MTF_TAPE_ADDRESS 4 bytes

Structure28. Type 1 MBC FDD Directory Entry (MTF_FDD_DIRB)

FDD Common Header {36 bytes}

The FDD Common Header field contains the 36 byte MTF_FDD_HDR structure that is found at the beginning of
every FDD entry Stream. This structure was described on the preceding pages. The TYPE field within the
MTF_FDD_HDR structure will be setto ‘DIRB’.

Last Modification Date{5 bytes}

The Last Modification Date field usesthe five byte MTF_DATE_TIME structure and contains the same data as the
Last Modification Date field in the corresponding MTF_DIRB DBLK.

Creation Date {5 bytes}

The Creation Date field is another five byte field using the MTF_DATE_TIME low level structure. Thisfield
contains the date and time when the directory was first created. The data contained hereisthe same asthat found in
the corresponding MTF_DIRB DBLK.

Backup Date {5 bytes}

The Backup Datefield is another five byte MTF_DATE_TIME field containing the date and time that the directory
was last backed up. Thisisthe same value asthat found in the corresponding MTF_DIRB DBLK in the Data Set.

Copyright 1997 Seagate Software, Inc.
9/15/00 Page 81

Media Based Catalog

Last Access Date {5 bytes}

The Last Access Date field also usesthe five byte MTF_DATE_TIME low level structure describing the date and time
that the directory was last accessed. The datafound hereisaduplicate of the samefieldinthe MTF_DIRB DBLK.

DIRB Attributes {4 bytes}

The DIRB Attributesfield isfour bytesin length organized as a 32-bit field. DIRB Attributes define characteristics of
the directory represented by thisMTF_DIRB DBLK. Thisfield isthe same as that found in the corresponding
MTF_DIRB DBLK.

Directory Name {4 bytes}
The Directory Name field isfour bytesin length usingan MTF_TAPE_ADDRESS low level structure that specifies

the location and size of the name associated with this directory. The Offset field used in this structure specifies the
offset from the beginning of thisMTF_FDD_DIRB entry to the beginning of the string containing the directory name.

OS SPECIFIC_DATA {4 bytes}

The OS_SPECIFIC_DATAfield usesthe four byte MTF_TAPE_ADDRESS structure; its contents are either zero or a
copy of the datafound in the corresponding field of the MTF_DB_HDR structure withinthe MTF_DIRB DBLK. The
Offset field contains the offset from the start of thisMTF_FDD_DIRB entry to the string containing a copy of the OS
information used for the corresponding MTF_DIRB DBLK written to media.

7.3.233 FDD File Entry (MTF_FDD_FILE)

The FDD File Entry corresponds with the MTF_FILE DBLK it representsin the Data Set. Many of the datafieldsfoundin
this structure contain copies of the datafound inthe MTF_FILE DBLK fields.

Offset Field Name Type Size
0 Oh FDD Common Header MTF_FDD_HDR 36 bytes
36 24h Last Modification Date MTF_DATE_TIME 5 bytes
41 29h Creation Date MTF_DATE_TIME 5 bytes
46 2Eh Backup Date MTF_DATE_TIME 5 bytes
51 33h Last Access Date MTF_DATE_TIME 5 bytes
55 37h FILE Attributes UINT32 4 bytes
60 3Ch File Name MTF_TAPE_ADDRESS 4 bytes
64 40h OS_SPECIFIC_DATA | MTF_TAPE_ADDRESS 4 bytes

Structure29. Type 1l MBC FDD File Entry (MTF_FDD_FILE)

FDD Common Header {36 bytes}

The FDD Common Header field containsthe 36 byte MTF_FDD_HDR structure that is found at the beginning of
every FDD entry Stream. This structure was described on the preceding pages. The TYPE field within the
MTF_FDD_HDR structure will besetto ‘FILE’.

Last Modification Date {5 bytes}

The Last Modification Date field usesthefive byte MTF_DATE_TIME structure and contains the same data as the
Last Modification Date field in the corresponding MTF_FILE DBLK.

Page 82

Copyright 1997 Seagate Software, Inc.
10/1/98

Media Based Catalog

Creation Date {5 bytes}

The Creation Date field also usesthe MTF_DATE_TIME low level structure containing the date and time the
directory wasfirst created. The data contained here is a duplicate of the same field in the corresponding MTF_FILE
DBLK.

Backup Date {5 bytes}

The Backup Datefieldisan MTF_DATE_TIME low level structure containing the date and time that the directory
was last backed up. Thisisthe same asthe datafound in the corresponding MTF_FILE DBLK.

L ast Access Date{5 bytes}
The Last Access Date field is also a duplicate of the same field in the corresponding MTF_FILE DBLK.

FILE Attributes{4 bytes}

The FILE Attributes field is a 32-bit field containing the same data as found in the FILE Attributesfield of the
corresponding MTF_FILE DBLK in the Data Set.

File Name {4 bytes}

The File Name field uses the four byte MTF_TAPE_ADDRESS low level structure that specifies the location and size
of the name associated with thisfile. The Offset field in thislow level structure specifies the offset from the
beginning of thisMTF_FDD_FILE entry to the string containing the file name.

OS_SPECIFIC_DATA {4 bytes}

The OS_SPECIFIC_DATA field usesthe four byte MTF_TAPE_ADDRESS structure. Its contents are either zero or a
copy of the datafound in the corresponding field of the MTF_DB_HDR structure withinthe MTF_FILE DBLK. The
Offset field contains the offset from the start of thisMTF_FDD_FILE entry to the string containing a copy of the OS
information used for the corresponding MTF_FILE DBLK written to media.

7.3.23.4 End of FDD Entry (MTF_FDD_FEND)
The End of FDD Entry does not corresponds with aDBLK in the Data Set. It isused to indicate the end of the FDD.

Offset Field Name Type Size

0 Oh FDD Common Header | MTF_FDD_HDR 36 bytes

Structure30. Type 1l MBC FDD End Entry (MTF_FDD_FEND)

FDD Common Header {36 bytes}

The FDD Common Header field containsthe 36 byte MTF_FDD_HDR structure that is found at the beginning of

every FDD entry Stream. This structure was described on the preceding pages. The TYPE field within the
MTF_FDD_HDR structure will be setto ‘FEND’.

The FEND entry isuniquein that it does not correspond to a DBLK within the Data Set and does not have arecord
specific section. It isused to indicate the end of the FDD entries. The space following the FEND entry is zero
padded up to the next Physical Block boundary. The Length field in the FDD Common Header specifies the offset to
the next PBA. Typically, the Set Map will begin at the start of the next Physical Block boundary.

Copyright 1997 Seagate Software, Inc.
9/15/00 Page 83

Media Based Catalog

7.3.3 Set Map

The Set Map isused to list al of the Data Sets of amediaor Media Family. Each successive Set Map written to amedia
contains information about the Data Sets previously written to media. The Set Map, like the FDD, iswritten as a stream and
can follow the FDD or be located on an alternate partition.

The Set Map iswritten as a stream with the Stream ID field of the Stream Header isset to* TSMP’. Pleaserefer to the Data
Stream section for information on the Stream Header. The Stream Header identifies the stream as being the Set Map stream
and isfollowed by three distinct parts.

1) Set Map Header
2) Set Map Entries

3) Volume Entries

7.3.3.1 Set Map Physical Layout

The Set Map begins with the Set Map Header which specifies the number of Set Map Entries which follow. Each Set Map
Entry isin turn followed by anumber of Volume Entries as specified in the Set Map Entry. Thereis a one-to-one
correspondence between the number of Set Map Entries and Volume Entriesin the Set Map, and the number of
MTF_SSET and MTF_VOLB DBLKsinthe MediaFamily. Thisincludes continuation MTF_SSET and MTF_VOLB
DBLKswritten during EOM processing conditions. See Appendix Jfor details on End Of Media and spanning
information. The order in which the Set Map Entries and Volume Entries appear in the Set Map isidentical to the order in
which their corresponding MTF_SSET and MTF_VOLB DBLKs are written to media.

7.3.3.2 Set Map Header (MTF_SM_HDR)

The Set Map Header is an eight byte header that contains information about the Media Family to which the Set Map
belongs, the number of Set Map Entries to follow, and a pad to the next stream alignment boundary.

Offset Field Name Type Size

0 Oh Media Family ID UINT32 4 bytes
4 4h Number Of Set Map Entries UINT16 2 bytes
6 6h Pad UINT8[2] | 2 bytes

Structure31. Type1l MBC Set Map Header (MTF_SM_HDR)

Media Family ID {4 bytes}
The Media Family ID field corresponds to the same field specified in the MTF_TAPE DBLK for thismedia. Please
refer tothe MTF_TAPE DBLK description for more information on thisfield.

Number Of Set Map Entries{2 bytes}

The Number Of Set Map Entriesfield istwo bytesin length and tells how many Set Map Entry structures are to follow
this Set Map Header. One Set Map Entry iswritten for every Data Set written to the Media Family.

Pad {2 bytes}
The Pad field exists to maintain 32-bit alignment. The field should beinitialized to zero.

7.3.3.3 Set Map Entry (MTF_SM_ENTRY)

The Set Map Entry corresponds withthe MTF_SSET DBLK it representsin the Data Set. Many of the datafieldsfoundin
this structure contain copies of the datafound inthe MTF_TAPE, MTF_SSET and MTF_ESET DBLK fields.

Copyright 1997 Seagate Software, Inc.
Page 84 10/1/98

Media Based Catalog

Offset Field Name Type Size
0 Oh Length UINT16 2 bytes
2 2h Media Sequence Number UINT16 2 bytes
4 4h Common Block Attributes UINT32 4 bytes
8 8h SSET Attributes UINT32 4 bytes
12 Ch SSET PBA UINT64 8 bytes
20 14h FDD PBA UINT64 8 bytes
28 1Ch FDD Media Sequence Number UINT16 2 bytes
30 1Eh Data Set Number UINT16 2 bytes
32 20h Format Logical Address UINT64 8 bytes
40 28h Number Of Directories UINT32 4 bytes
44 2Ch Number Of Files UINT32 4 bytes
48 30h Number Of Corrupt Files UINT32 4 bytes
52 34h Data Set Displayable Size UINT64 8 bytes
60 3Ch Number Of Volumes UINT16 2 bytes
62 3Eh Password Encryption Algorithm UINT16 2 bytes
64 40h Data Set Name MTF_TAPE_ADDRESS 4 bytes
68 44h Data Set Password MTF_TAPE_ADDRESS 4 bytes
72 48h Data Set Description MTF_TAPE_ADDRESS 4 bytes
76 4Ch User Name MTF_TAPE_ADDRESS 4 bytes
80 50h Media Write Date MTF_DATE_TIME 5 bytes
85 55h Time Zone INT8 1 byte
86 56h OS_ID UINT8 1 byte
87 57h OS_VERSION UINT8 1 byte
88 58h STRING_TYPE UINT8 1 byte
89 59h MTF Minor Version UINT8 1 byte
90 5Ah Media Catalog Version UINT8 1 byte
Structure32. Type1 MBC Set Map Entry (MTF_SM_ENTRY)
Length {2 bytes}

TheLengthisthesizeof the MTF_SM_ENTRY plusthe size of any appended strings.

M edia Sequence

Number {2 bytes}

The Media Sequence Number field corresponds to the Media Sequence Number field inthe MTF_TAPE DBLK to
which this Data Set belongs.

Copyright 1997 Seagate Software, Inc.

9/15/00

Page 85

Media Based Catalog

Common Block Attributes{4 bytes}

The Common Block Attributes field has the same organization as the field of the same nameinthe MTF_DB_HDR
structure.

SSET Attributes {4 bytes}
The SSET Attributes field is the same as the SSET Attributesfield inthe MTF_SSET DBLK.

SSET PBA {8 bytes}

The SSET PBA field corresponds to the Physical Block Address (PBA) field in the MTF_SSET DBLK and identifies
the PBA of the MTF_SSET DBLK.

FDD PBA {8 bytes}

The FDD PBA field contains the same information as the File/Directory Detail PBA field of the MTF_ESET DBLK.
This number specifies the Physical Block Address of the FDD associated with this Data Set.

FDD Media Sequence Number {2 bytes}
The FDD Media Sequence Number is aduplicate of the field of the sasme nameinthe MTF_ESET DBLK.

Data Set Number {2 bytes}
The Data Set Number field is a duplicate of the field of the same nameinthe MTF_SSET DBLK.

Number Of Directories{4 bytes}
The Number Of Directories field indicates the number of directories written as part of this Data Set.

Number Of Files{4 bytes}
The Number Of Filesfield indicates the number of fileswritten as part of this Data Set.

Number Of Corrupt Files{4 bytes}
The Number Of Corrupt Filesfield indicates the number of corrupt files written as part of this Data Set.

Data Set Displayable Size {8 bytes}

The Data Set Displayable Size field indicates the cumulative size of the Data Set. This should be the sum of the
displayable size of every filein the Data Set.

Number Of Volumes {2 bytes}

The Number Of Volumes field should correspond with the number of MTF_VOLB DBLKs in the Data Set and with
the number of Volume Entries that will follow this Set Map Entry (MTF_SM_ENTRY) structure.

Password Encryption Algorithm {2 bytes}
The Password Encryption Algorithmfield is a duplicate of the field of the same nameinthe MTF_SSET DBLK.

Data Set Name {4 bytes}
The Data Set Name field is aduplicate of the field of the same nameinthe MTF_SSET DBLK.

Data Set Password {4 bytes}
The Data Set Password field is aduplicate of the field of the same nameinthe MTF_SSET DBLK.

Data Set Description {4 bytes}
The Data Set Description field is a duplicate of the field of the same nameinthe MTF_SSET DBLK.

Page 86

Copyright 1997 Seagate Software, Inc.
10/1/98

Media Based Catalog

User Name {4 bytes}
The User Name field is aduplicate of the field of the same nameinthe MTF_SSET DBLK.

Media Write Date {5 bytes}
The Media Write Date field is aduplicate of the field of the same nameinthe MTF_SSET DBLK.

Time Zone {1 bytes}
The Time Zonefield is aduplicate of the field of the same nameinthe MTF_SSET DBLK.

0S ID (1 byte}

The OS ID field isaduplicate of the field of the same nameinthe MTF_DB_HDR structure of the MTF_SSET
DBLK.

OS VERSION (1 byte}

The OS VERSION field isaduplicate of the field of the same nameinthe MTF_DB_HDR structure of the
MTF_SSET DBLK.

STRING_TYPE (1 byte}

The STRING_TYPE field specifiesthe format of strings stored in the Set Map. Refer to the definition of thisfieldin
the description of the MTF_DB_HDR structure.

MTF Minor Version {1 byte}
The MTF Minor Version field is aduplicate of the field of the same nameinthe MTF_SSET DBLK.

Media Catalog Version {1 byte}
The Media Catalog Version field is a duplicate of the field of the same nameinthe MTF_SSET DBLK.

Note: All strings associated with a Set Map Entry are appended immediately after, and pointed to by the
MTF_TAPE_ADDRESS entries. The Offset field within the MTF_TAPE_ADDRESS structure specifies
offsets from the start of thisMTF_SM_ENTRY structure to the string being referred to.

7.3.3.4 Volume Entry

The Volume Entry structure in the Set Map isidentical tothe MTF_FDD_VOLB entry inthe File/Directory Detail. Please
refer to the description of the MTF_FDD_VOLB earlier in this section.

7.3.3.5 End of Media Issues

It is possible to encounter EOM while writing MBC information to media. Refer to Appendix Jfor detailed information on
End Of Media processing and the way it is handled under different conditions.

Copyright 1997 Seagate Software, Inc.
9/15/00 Page 87

Media Based Catalog

7.4 Type 2 MBC

This section describes the Type 2 Media Based Catalog. The Type 2 Media Based Catal og includes both a Set Map and
File/Directory Detail (FDD). Both of these are implemented as fixed length data streams attached to the End Of Set
(MTF_ESET) DBLK.

4 byte stream alignment

PBAY 22 byte stream header (FDD2) PBA z
\ \
FILE ESET FILE
X i oeLk | | SetMap FDD SPAD i {

/22 byte stream header (MAP2) /22 byte stream header (SPAD)

4 byte stream alignment 4 byte stream alignment

Figure25. Physical layout of Type2 MBC Set Map and FDD Streams

The MAP2 and FDD2 Stream Headers are aligned on the standard M TF stream header alignment of 4 bytes and the SPAD
data stream pads to the next physical block boundary. Thefirst Reserved for MBCfield of the MTF_ESET is used to store
the physical block address of the MTF_ESET.

To create Type 2 MBC, the Media Based Catalog Type field of the MTF_TAPE DBLK isset to avalue of 2 and the Media
Catalog Version field of the MTF_SSET DBLK is set to avalue of 1.

74.1 SetMap

The Set Map is written as a stream with the Stream ID field of the Stream Header isset to* MAP2'. The Stream Header
identifies the stream as being a Type 2 MBC Set Map and isfollowed by a series of DBLKs. A Type 2 Set Map is comprised
of MTF_TAPE, MTF_SSET, MTF_VOLB, and MTF_ESET DBLKSs. All DBLKsare packed. The Offset To First Event field
of the MTF_DB_HDR is modified to point to the next DBLK in the data stream.

4 byte Stream 4 byte Stream
Alignment Alignment

\ ¥\
ESET || S|Stream Data

DBLK |[H[tape1 |SSET 1 |VOLB 1 |ESET 1 |SSET 2 |VOLB 2 |TAPE 2 |SSET 2* |VOLB 2¢ |ESET 2 |SSET 3 |VOLB 3 |ESET 3

\ / A \ /‘ / \
Offset to First Event

MAP2 (*) Continuation DBLKs FOD?
Stream Header Stream Header

Figure26. Type2 MBC Set Map Example

Copyright 1997 Seagate Software, Inc.
Page 88 10/1/98

Media Based Catalog

7.4.2 File/Directory Detall

The FDD iswritten as a stream with the Stream ID field of the Stream Header isset to ‘FDD2'. The Stream Header identifies
the stream as being a Type 2 MBC FDD and is followed by a series of DBLKs. A Type 2 FDD iscomprised of MTF_VOLB,
MTF_DIRB, MTF_FILE, and MTF_CFIL DBLKs. All DBLKsare packed. The Reserved for MBC and Offset To First Event
fields of the Common Block Header modified. The Reserved for MBC is used to indicate the media number that the DBLK
was written to and the Offset To First Event is used to point to the next DBLK in the FDD.

4 byte Stream 4 byte Stream 4 byte Stream
Alignment Alignment Alignment
\ 3 W\
§ S| Stream Data Stream Data
\eB 3 |ESET 3 [|H|voLes DIRB, |DIRBB |DIRBC |FILE1 |FILE2 |DIRBD |FILE3 |FILE4 |FILE5
\

\
Offset to First Event
SPAD

FDD2
Stream Header Stream Header

Figure27. Type2 MBC FDD Example

7.4.3 End of Media Issues
It is possible to encounter EOM while writing MBC information to media. Refer to the section “End of Media Processing” for
detailed information on the way it is handled under different conditions.

When spanning from one mediato the next, the set map is written as a data stream attached tothe MTF_TAPE DBLK.
\

TAPE FILE

pBLK | | SetMap MARK X

/22 byte stream header (MAP2)

4 byte stream alignment

Figure28. Type2 MBC Spanning

Copyright 1997 Seagate Software, Inc.

9/15/00 Page 89

End Of Media Processing

8. End Of Media Processing

This section is devoted to End Of Media (EOM) processing. The following diagram is an example of a 1.0 format Data Set
with marks at all unique points at which End Of Media (EOM) early warning may be detected. Thisisfollowed by diagrams
and brief explanations of what iswritten on the original and continuation mediain each case.

v

fsser |voLB| DIRE | |FILE [pllFILE | DIRB [FILE |pue
cek |DBLK| ™ |DBLK i| " |CBLK j|"¥® DBLK j~1| ~|DBLK n| DBLK m |~

a b 2 def a b

Before beginning the detailed explanation of how each case is handled, there are certain general concepts which need to be
explained.

What will be referred to as "normal EOM processing” consists of writing afilemark, an End Of Tape Marker (MTF_EOTM)
block and another filemark, getting a continuation tape and writing a tape header with the continuation bit set in its attribute
field followed by afilemark. Any exceptions to this process will be noted in the detail for that case.

While the only block shown to have associated dataisthe MTF_FILE, methods for handling data associated with any block
should be handled in asimilar fashion. It isimportant to notethat MTF_SSET, MTF_VOLB and MTF_DIRB blocks can be
repeated on the continuation tape, with the continuation bit set in its attribute field, even when they are not the current block
being processed. Thisisbecause they contain information which is necessary for reading and restoring data from the
continuation tape without the need for the tape where the data management operation was started. However, if they have any
associated data, it is not repeated, and the data size should be zero.

The split across EOM always occurs on Format Logical Block boundaries. For purposes of EOM processing, an image block
and dataistreated the sameasaMTF_FILE block and data.

NOTE: In all the diagrams that follow, " indicates that the continuation bit (MTF_CONTINUATION) is set in the Block
Attributesfiled of the MTF_DB_HDR in the DBLK.

Copyright 1997 Seagate Software, Inc.
9/15/00 Page 91

End Of Media Processing

a) EOM after MTE_SSET - Process EOM normally, write the MTF_SSET again with the continuation bit set, and begin

writing again from the point you left off.
Tape 1

- S

SE8ET | File | EQTM| File
DBLK | Mark | DELK | Mark

TAPE

CBLK | Mark |DBLK | BELK

Tape 2

File SSET | VOLB

b) EOM after MTF_VOLB - Process EOM normally, write the MTF_SSET and the current MTF_VOLB again with the

continuation bit set in each, and begin writing again from the point you left off.
Tape 1

[E—

[L i

TAFE | S8SET
DELK | DELK

VOLE
DELK

ile TEOIM] File
Mark| DBELK | Mark

Tape 2

A 4

SBET
Mark |DBLK

VOLB
DBLK

DIRE
DBELK i

FILE

DBLKj| D@

C) EOM after MTF_DIRB - Process EOM normally, writethe MTF_SSET, and the current MTF_VOLB and
MTF_DIRB again with the continuation bit set in all three, and begin writing again from the point you left off.

Tape 1

A

TAPE [SSET |VOLB DIRE EQTM | File
DELK [DBLK |DBLK| " |DBLKi| Mark | GBLK [Mark
Tape 2
TAPE ile |SSET | VOLE [DIRB FILE | pata
CBLK | Mark DEiLK DE;LK DEiLKl DBLK |

Page 92

Copyright 1997 Seagate Software, Inc.
10/1/98

End Of Media Processing

d)

EOM after MTE_FILE - Process EOM normally, and writethe MTF_SSET, and the current MTF_VOLB and
MTF_DIRB again with the continuation bit set in all three. Writethe MTF_FILE again with the continuation bit set,
then write the data associated with that MTF_FILE, and continue on. Note that the dataiswritten immediately
following the MTF_FILE block, and since EOM always occurs at a Format Logical Block boundary, the chances of
EOM occurring at this point are very low.

Tape 1
TAPE |SSET |VOLE DIREB FILE
DBLK |DELK |DELK| |DBLKi | “"|DBLKj | Mark |DBELK

Tape 2

v

<
l

TAPE [File |5SET |VOLB|DIRE |FILE FILE
DBLK [Mark |DBLK |DBLK |DBLK i DBLK | Dat2| DELK j+1

EOM in mid MTF_FILE data- Process the EOM in the same manner as example d. Since the datawas split at a
Format Logical Block boundary, and the pad at the end of the datais already calculated to align the next block on a
Format Logical Block boundary, the remaining datais written beginning at the next Format Logical Block boundary,
rather than flush against the end of the continuation MTF_FILE block.

Tapc 1

[5 W) |
TAPE [SELCT | VOLG DIREG FLC Na Tile COTM| Til=2
DELK [DELK |DELK | |DBLKi | | DELK] Mark | DBELK | Mark

Tape 2

A 4

<
l

IAFE | File |SSE1 (VOLH|RIRE (FILE 1a Fll F
CBLK | Mark|DELK |DBELK |[DELKi|DELK | ™ DBLK +1
- - - * »

Copyright 1997 Seagate Software, Inc.

9/15/00

Page 93

End Of Media Processing

f)

g&h)

EOM at end of MTE_FILE data- Unlikethe MTF_SSET, MTF_VOLB and MTF_DIRB, theinformation in the

MTF_FILE block is not needed on the continuation tapeif the MTF_FILE dataiswritten completely. Therefore,
writing acontinuation MTF_FILE DBLK isoptional, and the continuation processing is done in the same manner as
examplec. i.e. The continuation DBLKs are written, and then the write operation continues with the block that was

due to be written when EOM occurred.

EOM at End Of Set - In this case, all set information ison tape, but the MTF_EOTM is still written asif the set
continues on the next tape. Notethat if the first filemark has been written, we do not write another. Only the

continuation MTF_SSET needs to be written before closing out the set normally, but it must also have the bit set to

indicate that the data for this set is contained fully on the previous tape.

Tape 1

A4

TAPE [SSET | VOLB DIRE FILE Dala File ECTM File
DBLK |DELK | DBLK DBLK n| DELK m Mark DBLK Mark
Tape 2
AL £1 |
TAPE | File |SSET File ESET File
DELK | Mar< [DBLK Mar< DBLK Mark

Page 94

Copyright 1997 Seagate Software, Inc.

10/1/98

End Of Media Processing

i&j) EOM between sets - In these two cases, the MTF_ESET has already been written, and the set iscompleted, but we do
not want another set started on thistape. Therefore, wewritean MTF_EOTM where the next MTF_SSET would be
expected, followed by afilemark. A continuation tape iswritten identical to the one written for casesg & h. Thisis
done to guarantee the existence of a unique continuation tape for beginning the next set. Note that whilea
MTF_TAPE DBLK aloneis sufficient to mark a unique continuation tape, information such as the number of the last
Data Set is necessary to append to the Media Family without requesting the previous tape.

Tape 1
A Ea .

TAPE | SSET | VOLE File ESET File EOTM File
NBRIK| DBELK | PRIK]| ™ Mark NEI K Mark DBLK Mark
Tape 2
LLa
TAFF | File |S3FT Fila ESET Fila
UBLK | Mar< | DBLK Mar< DBLK Mar<

" »

EOM cases with Media Based Catalogs

The following diagram is an example of an MTF Version 1.00aformat Data Set with Media Based Catalogs (MBC) showing
marks at all unigue points at which EOM early warning may be detected. Thisisfollowed by diagrams and brief explanations
of what iswritten on the original and continuation tapesis each case. Note that the MBC lies between the two filemarks at the
end of the set, and all EOM cases outside of MBC are handled in the same manner as with tapes which do not have MBC as
specified above. Cases a, g, and h are shown below to relate this diagram to the non-MBC diagram above. Casesk - qare
specific to MBC and detailed below.

\ 4

. On Tape On Tape .
SSET | . | File |ESET|Catalog File/ | Catalog ESET | File
DBLK Mark | DBLK| Directary Detail| Set Map DBLK | Mark
a o h k | m n 0 8] q

There are some further general concepts which need to be explained before detailing the MBC cases.

Inall cases, the MTF_EOTM will contain the physical block address of the second MTF_ESET of the last set which finished
completely (including MBC) on thetape. Attribute bitswill be defined to indicate whether the addressfield isinvalid (not
supported by drive or no MBC on tape), and to indicate if no ending MTF_ESET exists on the tape (i.e. one set spansthe entire
tape).

What will be referred to as "normal EOM processing” for MBC cases consists of writing afilemark, an End Of Tape Marker
(MTF_EOTM) block and another filemark, getting a continuation tape and writing a tape header with the continuation bit set in
its attribute field followed by a filemark, then writing the MTF_SSET with continuation bit set, another filemark, and finally
the starting MTF_ESET with continuation bit set. Any exceptionsto this process will be noted in the detail for that case.
File/Directory Datawill bereferred to as FDD, and the Set Map as SM.

Copyright 1997 Seagate Software, Inc.
9/15/00 Page 95

End Of Media Processing

k) EOM after first MTE_ESET - Process EOM normally, then begin writing the FDD.

)] EOM in mid FDD - Process EOM normally, then continue writing the FDD.

Copyright 1997 Seagate Software, Inc.
Page 96 10/1/98

End Of Media Processing

m) EOM after FDD - Process EOM normally, then begin writing the SM.

n) EOM in mid Set Map - Process EOM normally. The Set Map is then rewritten from the start. The Set Map is never
split between tapes!

Copyright 1997 Seagate Software, Inc.
9/15/00 Page 97

End Of Media Processing

0) EOM after Set Map - This caseishandled the sameway asin case n. The goal here is to make the Set Map available
on the last tape in the Media Family. This makes the MBC processing alot cleaner, and eliminates requiring the user
to switch back and forth between tapes when searching for the last Set Map in a Media Family.

p& q) EOM between sets - Asincasesi and j, the MTF_ESET is already written before we hit EOM, and the set is
complete. Sowewritean MTF_EOTM where the next MTF_SSET would be expected, followed by afilemark.
However, we still want a copy of the Set Map on the last tape in the Media Family. Therefore, we write the
continuation tape in the same manner as case 0.

Copyright 1997 Seagate Software, Inc.
Page 98 10/1/98

Appendix A - Operating System Specific Data

Appendix A Operating System Specific Data

The OS Specific Data field of the MTF_DB_HDR provides a storage | ocation for Operating System Specific Information. The
OSID and OSVersion fieldsinthe MTF_DB_HDR define the type of operating system specific datais stored in the OS
Specific Data field. These structures are defined for their respective platforms and use native data types. All structures must
be packet.

Operating System OsID OS Version
Number Number

NetWare 1 0
NetWare SMS 13 1

2
Windows NT 14 0
DOS / Windows 3.X 24 0
0s/2 25 0
Windows 95 26 0
Macintosh 27 0
UNIX 28 0
To Be Assigned 33-127
Vendor Specific 128 - 255

Figure29. OSID and OSVersion Matrix

OS ID values less than 128 may only be assigned by the MTF Review Committee. OS D values 128-255 are reserved for
vendor specific use.

NetWare (OS ID Number 1, OS Version Number 1)

The following structures are defined for OS Specific Data for Novell NetWare. The OSID field of the MTF_DB_HDR must
be set to avalue of 1 and the OSVersion field of the MTF_DB_HDR must be set to avalue of 0.

Offset Content Type Size
0 Oh Owner ID UINT32 4 bytes
4 4h Directory Attributes UINT32 4 bytes
8 8h Maximum Space UINT32 4 bytes
12 Ch Inherited Rights UINT16 2 bytes

Structure33. MTF_DIRB OS Specific Data for NetWare

Copyright 1997 Seagate Software, Inc.
9/15/00 Page 99

Appendix A - Operating System Specific Data

Offset Content Type Size
Oh Owner ID UINT32 4 bytes
4 4h File Attributes UINT32 4 bytes
8 8h Last Modifer ID UINT32 4 bytes
12 Ch Archiver ID UINT32 4 bytes
16 10h Inherited Rights UINT16 2 bytes

Structure34. MTF_FILE OS Specific Data for NetWare

NetWare SMS (OS ID Number 13, OS Version Number 1)
The following structures are defined for OS Specific Data for Novell NetWare SMS. The OSID field of the MTF_DB_HDR

must be set to avalue of 13 and the OSVersion field of the MTF_DB_HDR must be set to avalue of 1.

Offset Content Type Size
0 Oh Directory Attributes UINT32 4 bytes
4 4h Modified BOOLEAN 2 bytes
6h Creator Name Space UINT32 4 bytes
10 Ah Volume UINT8 17 bytes

Structure35. MTF_DIRB OS Specific Data for NetWare SMS (Version 1)

Offset Content Type Size
0 Oh File Attributes UINT32 4 bytes
4 4h Modified BOOLEAN 2 bytes
6 6h Creator Name Space UINT32 4 bytes
10 Ah Volume UINT8 17 bytes

Structure36. MTF_FILE OS Specific Data for NetWare SMS (Version 1)

NetWare SME (OS ID Number 13, OS Version Number 2)

The following structures are defined for OS Specific Data for Novell NetWare SMS. The OSID field of the MTF_DB_HDR
must be set to avalue of 13 and the OSVersion field of the MTF_DB_HDR must be set to avalue of 2.

Offset Content Type Size
0 Oh Directory Attributes UINT32 4 bytes
4 4h Creator Name Space UINT32 4 bytes
8 8h Volume UINTS8 18 bytes
26 1Ah Modified BOOLEAN 2 bytes

Page 100

Copyright 1997 Seagate Software, Inc.

10/1/98

Appendix A - Operating System Specific Data

Structure37. MTF_DIRB OS Specific Data for NetWare SM'S (Version 2)

Offset Content Type Size
Oh Directory Attributes UINT32 4 bytes
4 4h Creator Name Space UINT32 4 bytes
8h Volume UINT8 18 bytes
26 1Ah Modified BOOLEAN 2 bytes

Structure38. MTF_FILE OS Specific Data for NetWare SMS (Version 2)

Windows NT (OS ID Number 14, OS Version Number 0)

The following structures are defined for OS Specific Data for Windows NT. The OSID field of the MTF_DB_HDR must be
set to avalue of 14 and the OSVersion field of the MTF_DB_HDR must be set to avalue of 0. The Directory and File
information are obtained from the WIN32_FIND_DATA structure.

Offset Content Type Size

0 Oh Directory Attributes UINT32 4 bytes
Structure39. MTF_DIRB OS Specific Data for Windows NT

Offset Content Type Size
0 Oh File Attributes UINT32 4 bytes
4 4h Short name offset UINT16 2 bytes
6 6h Short name size UINT16 2 bytes
6 8h If non-zero signifies that the fileisa | BOOLEAN 2 bytes

link to a previously written file.

8 Ah Reserved UINT16 2 bytes

Windows NT (OS ID Number 14, OS Version Number 1)

Thefollowing structures are defined for OS Specific Data for Windows NT. The OSID field of the MTF_DB_HDR must be
set to avalue of 14 and the OSVersion field of the MTF_DB_HDR must be set to avalue of 1. The Directory and File
information are obtained from the WIN32_FIND_DATA structure.

Structure40. MTF_FILE OS Specific Data for Windows NT

Offset

Content

Type

Size

0 Oh

File System Flags
(IpFileSystemFlags parameter from
GetVolumelnformation API).

UINT32

4 bytes

Copyright 1997 Seagate Software, Inc.

Page 101

Appendix A - Operating System Specific Data

4h

NT Backup Set Attributes

UINT32

4 bytes

Structure4l. MTF_VOLB OS Specific Data for Windows NT

NT Backup Set Attributes {4 bytes}

The NT Backup Set Attributesfield isafour byte (32-bit) field specifying attributes that pertain to the NT volume. Bit
Oisdefined below. Bits1 - 23 arereserved for future use, and the most significant 8-bits (BIT24 - BIT31) are

reserved for vendor specific attributes.

Table27. TAPE Attributes

Name Description Value
NT_VOLB_IS DR_CANDIDATE | If set, then the datafollowing BITO
the VOLB should be suitable
for an NT system recovery.
Reserved (set to zero) BIT2 - BIT23
Vendor Specific BIT24 - BIT31
Offset Content Type Size
0 Oh Directory Attributes (dwFileAttributes | UINT32 4 bytes
field of the WIN32_FIND_DATA
structure)

4 4h Short name offset UINT16 2 bytes
6 6h Short name size UINT16 2 bytes
Structure42. MTF_DIRB OS Specific Data for Windows NT
Offset Content Type Size
0 Oh File Attributes (dwFileAttributes field | UINT32 4 bytes

of the WIN32_FIND_DATA

structure)
4 4h Short name offset UINT16 2 bytes
6 6h Short name size UINT16 2 bytes
8 8h NT File Flags (see) UINT32 4 bytes

Structure43. MTF_FILE OS Specific Data for Windows NT

Copyright 1997 Seagate Software, Inc.
10/1/98

Appendix A - Operating System Specific Data

Table28. NT File Flags

Name

Description

Value

NT_FILE_LINK_FLAG_BIT

This bit is set if the file is a posix
style hard link. If this bit is set, then
the data following the DBLK should
only contain one stream, this being
an STRM_NTFS_LINK (“LINK")

BITO

Reserved (set to zero). For
backwards compatibility, these bits
cannot be used.

BIT1 - BIT15

NT_FILE_POSIX_BIT

This bit is set if the file is POSIX.

BIT16

Reserved (set to zero)

BIT17 - BIT23

Vendor Specific

BIT24 - BIT31

DOS / Windows 3.X (OS ID Number 24, Version Number 0)

No structures are defined for DOS and Windows 3.X OS Specific Data. The OSID field of the MTF_DB_HDR must be set to
avalue of 24 and the OSVersion field of the MTF_DB_HDR must be set to avalue of 0.

0OS/2 (OS ID Number 25, Version Number 0)

Thefollowing structures are defined for OS Specific Data for OS/2. The OSID field of the MTF_DB_HDR must be set to a
value of 25 and the OSVersion field of the MTF_DB_HDR must be set to avalue of 0.

Offset Content Type Size
0 Oh Directory Attributes UINT32 4 bytes
Structure49. MTF_DIRB OS Specific Data for OS/2
Offset Content Type Size
0 Oh File Attributes UINT32 4 bytes

Structure50. MTF_FILE OS Specific Data for OS/2

Windows 95 (OS ID Number 26, Version Number 0)

The following structures are defined for OS Specific Data for Windows 95. The OSID field of the MTF_DB_HDR must be
set to avalue of 26 and the OSVersion field of the MTF_DB_HDR must be set to avalue of 0. The Directory and File
information are obtained from the WIN32_FIND_DATA structure.

Offset Content Type Size
0 Oh File Attributes UINT32 4 bytes
4 4h Short name offset UINT16 2 bytes

Copyright 1997 Seagate Software, Inc.
9/15/00

Page 103

Appendix A - Operating System Specific Data

6 6h Short name size UINT16 2 bytes
Structure51. MTF_DIRB OS Specific Data for Windows 95
Offset Content Type Size
0 Oh File Attributes UINT32 4 bytes
4 4h Short name offset UINT16 2 bytes
6 6h Short name size UINT16 2 bytes

Structure52. MTF_FILE OS Specific Data for Windows 95

Macintosh (OS ID Number 27, Version Number 0)

Thefollowing structures are defined for OS Specific Data for Macintosh. The OSID field of the MTF_DB_HDR must be set
to avalue of 27 and the OS Version field of the MTF_DB_HDR must be set to avalue of 0. A MAC_UINTXX isused to

indicate 68X X X byte order.

Offset Content Type Size
0O Oh Volume Parms Attributes MAC_UINT32 4 bytes
4 4h Volume Attributes MAC_UINT16 2 bytes
6 6h Volume Signature MAC_UINT16 2 bytes
8 8h Drive Number MAC_UINT16 2 bytes
10 Ah Driver Ref. Number MAC_UINT16 2 bytes
12 Ch File System ID MAC_UINT16 2 bytes
14 Eh Creator Data MTF_DATE_TIME | 5 bytes
19 13h Modification Date MTF_DATE_TIME 5 bytes
24 18h Volume Finder Info MAC_UINTS8 32 bytes

Structure53. MTF_VOLB OS Specific Data for Macintosh

Offset Content Type Size
0 Oh Finder Info MAC_UINT8 16 bytes
16 10h Additional Finder Info MAC_UINTS8 16 bytes
32 20h Directory ID MAC_UINT32 4 bytes
36 26h Directory Info MAC_UINT16 2 bytes
38 28h Directory X Info MAC_UINT8 1 bytes
39 29h Directory Attributes MAC_UINTS8 1 bytes

Structure54. MTF_DIRB OS Specific Data for Macintosh

Page 104

Copyright 1997 Seagate Software, Inc.

10/1/98

Appendix A - Operating System Specific Data

Offset Content Type Size

0 Oh Finder Info MAC_UINTS8 16 bytes
16 10h Additional Finder Info MAC_UINTS8 16 bytes
32 20h Directory ID MAC_UINT32 4 bytes
36 24h File Type MAC_UINT32 4 bytes
40 28h File Creator MAC_UINT32 4 bytes
44 2Ch File Info MAC_UINT16 2 bytes
46 2Eh File X Info MAC_UINTS8 1 bytes
47 2Fh File Attributes MAC_UINT8 1 bytes

Structure55. MTF_FILE OS Specific Data for Macintosh

UNIX (OS ID Number 28, Version Number 0)
(to be defined)

Copyright 1997 Seagate Software, Inc.
9/15/00 Page 105

Appendix F - Data Compression

Appendix B Password Encryption Algorithm

MTF currently defines a single password encryption algorithm based on the Message Digest 5 (MD5) algorithm as described
in RFC 1321. Password encryption can be done on the Media Password field of the MTF_TAPE DBLK and on the Data Set
Password field of the MTF_SSET DBLK.

Table30. Password Encryption Algorithm Table

Name Description Value

MTF_MD5 Message Digest 5 5

Message Digest 5

The MD5 algorithm takes as input a message of arbitrary length and produces as output a 128-bit “fingerprint” or “message
digest” of theinput. It is conjectured that it is computationally infeasible to produce two messages having the same message
digest, or to produce any message having a given prespecified target message digest. A copy of RFC 1321 can be obtained
from the world wide web or viaemail to “mtf @smg.seagate.com”.

Media Password

The MediaPassword field of the MTF_TAPE DBLK can be encrypted. To encrypt, the Password Encryption Algorithm field
of the MTF_TAPE DBLK isset toavalue of 5(MD5 encryption algorithm). The unencrypted password is given asinput to
the M D5 algorithm which produces as output a 128-bit “message digest” of the password. The MD5 128-hit output is stored
in the Media Password field. The Password Encryption Algorithm field is set to avalue of 0 if no password encryption is
used.

Note: If the Password Encryption Algorithm is unknown, no access to the mediais allowed by software.

Data Set Password

The Data Set Password field of the MTF_SSET DBLK can be encrypted. To encrypt, the Password Encryption Algorithm
field of the MTF_SSET DBLK isset to avalue of 5 (MD5 encryption algorithm). The unencrypted password is given as input
to the M D5 algorithm which produces as output a 128-bit “message digest” of the password. The MD5 128-bit output is
stored in the Data Set Password field. The Password Encryption Algorithm field is set to avalue of 0 if no password
encryption is used.

Note: If the Password Encryption Algorithm is unknown, no access to the data set is allowed by software.

Copyright 1997 Seagate Software, Inc.
9/15/00 Page 107

Appendix C - Data Compression Algorithm

Appendix C Data Compression Algorithm

MTF currently defines a single data compression algorithm based on the Stac Technologies LZS221 compression libraries. The
definition of the LZS221 compression a gorithm isintended to provide cross product tape interchange of software compressed
streams. It isassumed that a working knowledge of the LZS221 compression libraries is known.

Table31. Data Compression Algorithm Table

Name Description Value

MTF_LZS221 Stac Technologies LZS221 OxOABE

Common Block Header
All Common Block Headersin the Data Set are set to indicate possibility of compressed streams. The MTF_COMPRESSION
bit is set in the Block Attributes field and the Software Compression Algorithm field is set to the value of OXOABE.

Note: Compression cannot be used on End of Set (MTF_ESET) Data Streams.

Stream Header

Toindicate the stream is compressed in the Stream Header, set the STREAM_COMPRESSED bit in the Stream Tape Format
Attributes field and set the Data Compression Algorithm field to the value of OXOABE. If the compressed stream isvariable
length (STREAM_VARIABLE), all Stream Headers used to make up the variable length stream are set to indicate
compression is active. Once compression is active, all stream data must be encapsulated by Compression Frame Headers.

LZS221 Buffer Sizes

The size of the buffers used by the Compress and Decompress routines are provided in the table bel ow.

Name Description Size
src Source buffer 62 * 1024
dst Destination buffer (62 *1024) + 32
scratchRAM Scratch buffer used by LZS221. LZS_HISTORY_SIZE
This is defined in the LZS221
header file.

Compress

The LZS221 compression library specifiesa Compress API. Uncompressed datais passed in the src buffer and compressed
dataisreturned in the dst buffer. The following prototype is from the LZS221-86 compression library.

extern void OS2_API Compress(char **src,
char ** dst,
unsigned long *srcCnt,
unsigned long *dstCnt,
char *scratchRAM);

Copyright 1997 Seagate Software, Inc.
9/15/00 Page 109

Appendix C - Data Compression Algorithm

Decompress

The LZS221 compression library specifies a Decompress APl. Compressed datais passed in the src buffer and uncompressed
datais returned in the dst buffer. The following prototype is from the LZS221-86 compression library.

extern int OS2_API Decompress(char

char

**grc,
**dst

unsigned long *srcCnt,
unsigned long *dstCnt,

char

*scratchRAM);

Compress and Decompress Pseudo Code
The following compress and decompress pseudo code integrates into the LZS221-86 compression library and is provided to

assist in development.

#define STAC QCDEC I D

#defi ne STAC | NPUT_BUFFER Sl ZE
#defi ne STAC QUTPUT_BUFFER Sl ZE

m pu8H st or yBuf f er
m pu8l nput Buf f er
m pu8Qut put Buf f er

new U NT8
new U NT8
new U NT8

[
[
[

OXOABE
1024 * 62
(1024 * 62) + 32

LZS H STCRY_S! ZE] ;
STAC | NPUT_BUFFER Sl ZF] ;
STAC OUTPUT_BUFFER S| 7] ;

Page 110

Copyright 1997 Seagate Software, Inc.
10/1/98

Appendix C - Data Compression Algorithm

function: St acLzZS211: : Tr yGonpr essi ng

description: pass in unconpressed data and conpress it. if the conpressed data is snaller
than the unconpressed data, the conpressed data is returned. if the conpressed
data is larger than the unconpressed data, the unconpressed data i s returned.

entry: the Unconpressed Size field of the Conpression Frame Header is set to
psPar am >u32RawDat aSi ze.
psPar am >pu8Rawbat a points to the buffer containing the unconpressed
dat a.
psPar am >u32RawDat aS ze contains the size of the unconpressed data.
psPar am >pu8Conpr essedDat a undef i ned

psPar am >u32Conpr essedDat aSi ze undef i ned

exit: the Gonpressed Size field of the Conpression Frane Header is set from
psPar am >u32Conpr essedDat aSi ze and the data pointed to by
psPar am >pu8Conpr essedData is witten to tape.

e
D

voi d StacLZS211: : TryConpr essi ng (CCDEC_PARAM * psPar an)
{

BOCL f UseConpr essedDat a;
U NT32 u32Qut put Byt eslsed;

U NT8 * pu8l nput Buffer = psParam >pu8RawDat &;
U NTI32 u32l nputGount = psPar am >u32RawDat aS ze;
U NT8 * pu8Qut put Buf fer = m pu8Qut put Buf f er; /1 local dst buffer

UNT32 u32Qutput Count = STAC OJTPUT BUFFER S| ZE

/] call into the LZS221 conpression libray to conpress the data

Gonpress ((char **) &pu8l nput Buf f er, Il src
(char **) &pu8Qut put Buf f er, /1 dst
(unsigned long *) &u32l nput Count , /] srcnt (max size of STAC | NPUT_BUFFER Sl ZE)
(unsigned long *) &u32Qut put Count, /1 dstnt
(char *) m pu8H storyBuffer);// scratchRAM

if (u32Qut put Count == 0)

/1 the conpressed data is larger than the unconpressed data
f UseConpr essedDat a = FALSE;

el se

{
/] flush the conpression buffer. the output count nust be set to
/1 zero and the Conpress APl called again.
u32Qut put Count = 0;

Gonpress ((char **) &pu8l nput Buf f er, Il src
(char **) &pu8Qut put Buf f er, /1 dst
(unsi gned long *) &u32l nput Count , Il srcOnt
(unsigned long *) &u32Qut put Count, /] dstnt
(char *) m pu8H storyBuffer);// scratchRAM

/1 determne the nunber of conpressed bytes in the output buffer
u32Qut put Byt esUsed = pu8Qut put Buf fer - m pu8Qut put Buf f er;

/] check to see if the conpressed data is smaller than the unconpressed
f UseConpr essedDat a = (u32Qut put Byt esUsed < psParam >u32RawDat aS ze) ;
}

if (f UseConpressedDat a)

/1 the conpressed data is snmaller that the unconpressed
psPar am >pu8Conpr essedDat a = m pu8Qut put Buf fer;
psPar am >u32Conpr essedDat aS ze = u32Qut put Byt esUsed;

el se
/1 the unconpressed data is snaller that the conpressed data

psPar am >pu8Conpr essedDat a = psPar am >pu8Rawlat a;
psPar am >u32Conpr essedDat aS ze = psPar am >u32RawDat aS ze;

Copyright 1997 Seagate Software, Inc.
9/15/00 Page 111

Appendix C - Data Compression Algorithm

psPar am >u32RawDat aS ze

psPar am >pu8RawDat a
psPar am >u32RawDat aSi ze

B e
T R

function: St acLZS211: : Tr yDeconpr ess
description: pass in conpressed data and deconpress it. the unconpressed data is returned if
no error condition.
entry: psPar am >pu8RawDat a undef i ned
psPar am >u32RawDat aSi ze undef i ned
psPar am >pu8Conpr essedDat a points to the buffer containing all conpressed
data for this frane.
psPar am >u32Conpr essedDat aSi ze contai ns the size of the conpressed data fromthe
Gonpressed S ze field of the Conpression Frane
Header .
exit: i f SUOCESSFUL
psPar am >pu8RawDat a points to a buffer containing the unconpressed

dat a.

contains to size of the unconpressed data in the
buffer pointed to by psParam >pu8RawData. this
nust natch the Unconpressed S ze field of the
Conpr essi on Frane Header .

if QODEC ERR QOULD NOT_DECOMPRESS

undef i ned
undef i ned

int StacLzZzS211:: TryDeconpress (GODEC PARAM * psPar am)
{

int i Ret Val ;
U NT8 * pu8l nput Buf fer = psParam >pu8Conpr essedDat a;
U NT32 u32l nput Count = psPar am >u32Conpr essedDat aS ze;
U NT8 * pu8Qut put Buf fer = m pu8Qut put Buf f er;
U NT32 u32Qut put Gount = STAC QUTPUT_BUFFER Sl ZE,
i RetVal = Deconpress ((char **) &pu8l nput Buf f er, Il src
(char **) &pu8Qut put Buf fer, /1 dst
(unsi gned I ong *) &u32l nput Count , /1 srcOnt
(unsigned long *) &u32Qut put Count, /] dstnt
(char *) mpu8H storyBuffer);// scratchRAM
if (iRtvVal !=0)
/1 if the return val ue from Deconpress is non-zero then flush the deconpressor
u32l nput Gount = 0O;
i RetVal = Deconpress ((char **) &pu8l nput Buf f er, Il src
(char **) &pu8Qut put Buf f er, /1 dst
(unsigned | ong *) &u32l nput Count, Il srct
(unsi gned | ong *) &u32Qut put Count , /] dstt
(char *) m pu8H storyBuffer);// scratchRAM
}
if (iRetVal == 0)
{
/1 the data was successful |y deconpressed
psPar am >pu8RavDat a = m pu8Qut put Buf f er;
psPar am >u32RawDat aSl ze = STAC OJTPUT_BUFFER Sl ZE - u32Qut put Count ;
/] consi stency check
if (psParam >u32Rawbat aS ze <= STAC | NPUT_BUFFER Sl ZE)
return SUOCCESSFU;
}

return QODEC FRR OOULD NOT_DECOMPRESS;

Page 112

Copyright 1997 Seagate Software, Inc.

10/1/98

Appendix E - Optical Media Framework

Appendix D Implementation Issues

Field Size and Alignment

Due to the nature of many of the 32-bit processors, all 32-bit elements are aligned on 4 byte boundaries, and all 16-bit elements
are aligned on even byte boundaries. Without this requirement, the actual size of the structure would vary depending on the
type of processor and the compiler. All mediastructures are packed to 1 byte boundariesto ensure compatibility.

Software Compression Algorithm

The Data Encryption Algorithm in the MTF_SSET DBLK has been changed to Software Compression Algorithm. MTF
Version 1.00alimits a backup set to a single software compression algorithm. The addition of the Software Compression
Algorithm allows software to determine if Data Sets have compatibl e software compression algorithms. Data Encryption has
not been defined and this change should have no impact on existing products.

Block Alignment Pad

InVersion 1.0 of MTF, aBlock Alignment Pad is used between the end of aDBLK and the start of the next DBLK. The Block
Alignment Pad can be afew bytes or hundreds of bytes depending on the length necessary to fill to the next Format L ogical
Block. A block alignment pad has no header, it issimply NULL data (binary zero). Block Alignment Pads are only used
following DBLKswhich don’t have a data stream section immediately following. MTF Version 1.00a uses a stream pad
(SPAD) in place of the Block Alignment Pad.

Offset To First Event

The Offset To First Event field in the Common Block Header normally points to the header of the first stream associated with
that DBLK. Early drafts of the MTF 1.0 specification did not require the SPAD Data Stream. The following method is
suggested for determining whether the Offset To First Event field pointsto isa Sream Header or DBLK:

1. Check to seeif itisaknown DBLK or Stream type, then use the checksum to verify the integrity of the data.
2. If step 1 fails use the checksum to determineiif it is an unknown Stream Header .
3. If step 2 fails use the checksum to determineif it is an unknown DBLK.

Device Specific Physical Block Addressing

There are two types of positioning: absolute (physical) and logical. Not all drives support both types of positioning: the drive's
feature bits indicate the type(s) supported. Also, on some drives, the media (tape) can affect whether or not positioning is
supported; i.e., adrive's feature bits can change depending on whether or not thereis mediain the drive and/or the type of
mediain the drive.

Some Windows NT tape (class) drivers do a software simulation of logical tape positioning in the driver; i.e., they implement
pseudo-logical tape positioning. This provides a means to write/read MTF on media and drives that intrinsically support only
absol ute tape positioning.

On all drives, positioning support is intended to provide ameansto do a "get position” while writing to tapein order to be able
to later do a"set position™ to that same position and then begin reading the tape at/from that same position. Thistechnique will
always "work" and it can be done on any media and drive that supports either type of positioning; i.e., it isalways possible to
"set position" to either an absolute position or alogical position obtained by means of a"get position™. It is not certain that a
"set position” to a"synthetic" position (i.e., any position not directly obtained by means of a"get position") will "work".
Arbitrary, "random access" positioning capability on tape is not intended; in fact, it is not supported by/on many drives.

However, it isusually possible to "set position" to aposition relative to (i.e., at an offset from) alogical position (pseudo or
real) obtained by means of a"get position". On all mediaand drives where logical positioning is supported, thisrelative
(offset) type of "set positioning" can at least be done;

in aforward direction (positive offset),

from the logical position obtained by means of a"get position"”,

Copyright 1997 Seagate Software, Inc.
9/15/00 Page 113

Appendix C - Data Compression Algorithm

to/at any relative, calculated position (sum of offset and logical position obtained by means of a"get position™),

within and throughout the/any region of datathat is/was consecutively and contiguously written immediately following
thelogical position obtained by means of a"get position” (i.e., adata"zone" produced by consecutive and contiguous
"writes" and nothing else -- no other intermediate tape mark writes, "get positions", or whatever).

The foregoing istrue both on mediaand drives that intrinsically support true (SCSI-2) logical positioning and on mediaand
drives where (driver implemented) pseudo-logical positioning is supported.

In addition to the foregoing, on media and drivesthat intrinsically support true logical positioning it is possible to do both
forward and reverserelative "set positions' (negative or positive offset) and relative "set positions' that cross tape mark
divisions (filemarks and/or setmarks).

In the set of tape media and tape drives handled by the current set of Windows NT tape drivers (4mmdat.sys, archgic.sys,
exabytel.sys, exabyte2.sys, tandgic.sys, wanggic.sys, and gicl17.sys), the mediaand drives that intrinsically support true
(SCSI-2) logical positioning are all DAT media and drives (4mmdat.sys), the 1.35 gigabyte (9135) and 2.1 gigabyte (9210)
QIC media and Archive Anaconda (model 2750 and model 2800) QIC drives (archgic.sys), and 5+ gigabyte 8mm media and
SCSI-2 8mm drives (exabyte2.sys -- Exabyte 8500 series and compatible). In all other cases where logical positioning support
isindicated in the drive features bits, it is pseudo-logical tape positioning support; i.e., it is done by software simulation of
logical tape positioning in the driver.

Thus, although it is sometimes possible to "set position” to aposition relative to (i.e., at an offset from) an absolute position
obtained by means of a"get position", it is unnecessary to do so: pseudo-logical tape positioning isimplemented in the
Windows NT tape driverswhereiit is possible to do so. Doing so is very media/drive unique and hence requires very
media/drive specific knowledge. An understanding of how thisis accomplished can be acquired by studying the technical
standards that govern the physical format of recorded information on the specific tape media, the tape drive technical manual(s)
and the Windows NT tape driver source code. Translation between absol ute position and pseudo-logical position and vice versa
is accomplished by module "physlogi" in the Windows NT tape drivers. The source code for this module (physlogi.c) is
included in the Windows NT DDK.

Copyright 1997 Seagate Software, Inc.
Page 114 10/1/98

Appendix E - Optical Media Framework

Appendix E Optical Media Framework

This appendix defines aframework for writing MTF data to an optical media This framework was defined and implemented
by Seagate Software Inc. prior to the definition of the Soft Filemark Descriptor Block (MTF_SFMB DBLK).

In this framework, the optical mediaisviewed asaliner media. The mediaisdivided into three parts. First isthe Optical
Media Header which occupies a single sector and islocated at Logical Sector Address (L SA) 0x0606, the second is the Optical
Data Areawhich startsin the next available sector after the Optical Media Header and grows towards the Optical Filemark
Tables, and the third is the Optical Filemark Tables, the first of which islocated at the end of the media with additional Optical
Filemark Tables being added towards the Optical Data Area.

[Optical Data Area> @)tical Filemark Table |

LSAye0s LSA LSA LSA LSA LSA LSA

X607 X608 X609 n-2 n-1 n

Optical Optical Optical
Media Header |Data Area Filemark Table

[N

Figure 30. Optical Media Framework

Note: Asthe Optical Data Areaand Optical Filemark Tables grow towards each other, enough space must be reserved for end
of media processing.

Optical Media Header

The Optical Media Header contains signature information, starting sector of the Optical Data Area, and the starting sector of
the first Optical Filemark Table.

Offset Field Name Type Size
0 Oh Optical Signature UINT8 [20] 21 bytes
21 15h Optical Format UINTS [8] 9 bytes
30 1Eh Volume Serial Number UINT32 4 bytes
34 22h Sector Size UINT32 4 bytes
38 26h Starting Data Sector UINT32 4 bytes
42 2Ah Starting Filemark Sector UINT32 4 bytes

Structure56. Optical Media Header

Optical Signature {21 bytes}

The Optical Signature field is a 21 byte character signature used to identify this as the Optical MediaHeader. The
signature is set tothe NULL terminated string “ Arcada Software Inc.”.

Optical Format {9 bytes}

The Optical Format field isa 9 byte field containing a character sequence that identifies the version of the Optical
Media Framework being used. Thisfield isset tothe NULL terminated string “OTEF 1.0°.

Copyright 1997 Seagate Software, Inc.
9/15/00 Page 115

Appendix E - Optical Media Framework

Volume Serial Number {4 bytes}
The Volume Serial Number is a4 byte field that contains the volume serial number of this optical media.

Sector Size {4 bytes}
The Sector Sizefield isa4 byte field that contains the size of a sector on this optical media.

Starting Data Sector {4 bytes}
The Starting Data Sector field isa4 byte field that contains the L SA that the Optical Data Area starts.

Starting Filemark Table Sector {4 bytes}

The Starting Filemark Table Sector field isa 4 byte field that contains the LSA of the first Optical Filemark Table.
Additional Optical Filemark Tables are added in adjacent sectors growing towards the Optical Data Area.

[Optical Data Area> @tical Filemark Table |

LSA()(GOG LSA()(607 LSA()(GOS LSA()(GOQ \ \ LSAn»Z LSAn»l LSAI‘\

Optical Optical 2" Optical 15! Optical
Media Header |Data Area Filemark Table |Filemark Table

Vo

Starting Filemark
Table Sector

Figure31. Multiple Optical Filemark Tables

Optical Filemark Table

The Optical Filemark Table contains the end of data sector, number of filemarksin the array, sector number of the previous
filemark table, and an array of filemarks.

Offset Field Name Type Size
0 00h Optical Table ID UINT32 4 bytes
4 04h End Of Data Sector UINT32 4 bytes
8 08h Number Of Filemark Entries UINT32 4 bytes
12 0Ch Last Entry In Previous Filemark Table | UINT32 4 bytes
16 10h Filemark Array UINT32 sector size - 16

Structure57. Optical Filemark Table

Optical TableID {4 bytes}

The Optical TablelID field isa4 byte character signature used to identify thisas a Optical Filemark Table. Thisfield
issetto ‘OTEF'. ThisisnotaNULL terminated string.

End Of Data Sector {4 bytes}

The End Of Data Sector field is 4 bytesin size and containsthe EOD LSA. The EOD L SA isthefirst free sector that
can be used to grow the Optical Data Area. The End Of Data Sector field isonly valid for the most recent Optical
Filemark Table.

Copyright 1997 Seagate Software, Inc.
Page 116 10/1/98

Appendix E - Optical Media Framework

Number Of Filemark Entries{4 bytes}
The Number Of Filemark Entriesfield is 4 bytesin size and contains the number of filemark entriesin the Filemark
Array.

Last Entry In Previous Filemark Table{4 bytes}

The Last Entry InPrevious Filemark Tablefield is 4 bytesin size and contains the LSA of the last entry in the
previous Optical Filemark Table.

Filemark Array {4 bytes}

The Filemark Array field is an array of filemark elements. Each filemark element isa 4 byte LSA. Filemarksoccupy
one physical sector of undefined data. If aentry inthe array isnot used, it is set to avalue of zero.

Copyright 1997 Seagate Software, Inc.

9/15/00

Page 117

