
Microsoft ™ Tape Format Specification

Version 1.00a - document rev. 1.8

September 15, 2000

derived from Microsoft ™ Tape Format Version 1.0

Document Revision 1.0

Copyright 1997 Seagate Software, Inc.

Revision History

Copyright 1997 Seagate Software, Inc.
Page 2 10/1/98

Revision History
Date Description

03-13-98 Changed copyright notice.

10-21-97 Changed File Attributes. The file attributes were inadvertently changed to incorrect values in a previous version
of the specification. The changes to the file attributes reflect the correct definition.

09-03-97 The Media Catalog Version field of the Start of Set Descriptor Block now refers to the Media Based Catalog
definition for assigned values.

07-10-97 Added clarifications to the Common Block Header fields of the Tape, End of Set, End of Media, and Soft
Filemark Descriptor Blocks.

06-10-97 Added sparse file support and NT specific streams. Add NT OS Specific Information for volumes.

04-11-97 Removed STREAM_CONTINUE reference from Variable Length Stream.

04-02-97 Corrected text in TAPE Attributes field of the Tape Header Descriptor Block.

04-02-97 Corrected NT OS Specific Information (OS ID Number 14, OS Version Number 0). Reserved field was added
to correct alignment problem.

04-02-97 Added NT OS Specific Information (OS ID Number 14, OS Version Number 1).

Print History
Date Version

03-12-98 Version 1.00a Rev 1.8

10-21-97 Version 1.00a Rev 1.7

07-10-97 Version 1.00a Rev 1.6

06-10-97 Version 1.00a Rev 1.5

04-10-97 Version 1.00a Rev 1.4

04-02-97 Version 1.00a Rev 1.3

08-20-96 Version 1.00a Rev 1.2

Table of Contents

Copyright 1997 Seagate Software, Inc.
9/15/00 Page 3

Table of Contents

1. INTRODUCTION.. 9

1.1 WHO SHOULD READ THIS DOCUMENT ..9
1.2 DOCUMENT LAYOUT ..9

2. DESIGN GOALS ...11

3. FORMAT DESCRIPTION..13

3.1 DATA SETS...13
3.2 FUNDAMENTAL ELEMENTS..13

3.2.1 Descriptor Blocks...13
3.2.1.1 Descriptor Block Anatomy ..14

3.2.1.1.1 Common Block Header...14
3.2.1.1.2 Fixed Lenght DBLK Information ...14
3.2.1.1.3 Operating System Specific Data ...14
3.2.1.1.4 Variable Length DBLK Specific Information ..14
3.2.1.1.5 Detailed Descriptor Block Layout ..15

3.2.1.2 Defined Descriptor Blocks ...15
3.2.1.2.1 Tape Header Descriptor Block..15
3.2.1.2.2 Start of Data Set Descriptor Block..16
3.2.1.2.3 Volume Descriptor Block...16
3.2.1.2.4 Directory Descriptor Block...16
3.2.1.2.5 File Descriptor Block..16
3.2.1.2.6 Corrupt Object Descriptor Block..16
3.2.1.2.7 End of Set Pad Descriptor Block..16
3.2.1.2.8 End of Set Descriptor Block...16
3.2.1.2.9 End of Tape Marker Descriptor Block..16
3.2.1.2.10 Soft Filemark Descriptor Block..17

3.2.2 Data Streams...17
3.2.3 Filemarks...17

3.3 MEDIA LAYOUT ..18
3.3.1 Media Header ...18
3.3.2 Data Sets ..19

3.3.2.1 Implied Precedence within a Data Set ...19
3.3.2.2 Media Based Catalogs..20

3.3.3 End of Media...20
3.4 ADDRESSING..22

3.4.1 Physical Block ..22
3.4.2 Format Logical Block ..22
3.4.3 Calculating Physical Block Addresses ...23

3.5 ALIGNMENT ...24
3.5.1 Descriptor Blocks...24
3.5.2 Data Streams...24
3.5.3 Filemarks...24

4. SUPPORT STRUCTURES..27

4.1 UINT64...27
4.2 MTF_TAPE_ADDRESS...27
4.3 MTF_DATE_TIME...28

5. DESCRIPTOR BLOCKS ..29

5.1 COMMON BLOCK HEADER...29
5.1.1 DBLK Specific Attribute Bits..33
5.1.2 Strings Within DBLKs..33

5.2 DBLK STRUCTURES...33
5.2.1 Tape Header Descriptor Block (MTF_TAPE) ..34
5.2.2 Start of Data Set Descriptor Block (MTF_SSET)...38
5.2.3 Volume Descriptor Block (MTF_VOLB) ..42

Revision History

Copyright 1997 Seagate Software, Inc.
Page 4 10/1/98

5.2.4 Directory Descriptor Block (MTF_DIRB) ... 44
5.2.5 File Descriptor Block (MTF_FILE).. 47
5.2.6 Corrupt Object Descriptor Block (MTF_CFIL) ... 50
5.2.7 End of Set Pad Descriptor Block (MTF_ESPB) ... 52
5.2.8 End of Data Set Descriptor Block (MTF_ESET).. 53
5.2.9 End of Tape Marker Descriptor Block (MTF_EOTM) .. 56
5.2.10 Soft Filemark Descriptor Block (MTF_SFMB) .. 57

6. DATA STREAMS.. 59

6.1 STREAM HEADER (MTF_STREAM_HDR)...59
6.2 STREAM DATA ..61

6.2.1 Platform Independent Stream Data .. 61
6.2.1.1 Standard Data Stream (STANDARD_DATA_STREAM)...62
6.2.1.2 Directory Name In Stream (PATH_NAME_STREAM)...62
6.2.1.3 File Name In Stream (FILE_NAME_STREAM)..62
6.2.1.4 Checksum Stream (CHECKSUM_STREAM)..62
6.2.1.5 Corrupt Stream (CORRUPT_STREAM) ..63
6.2.1.6 Pad Stream (PAD_STREAM)...63
6.2.1.7 Sparse Stream (SPARSE_STREAM)..63

6.2.2 Windows NT Stream Data .. 64
6.2.2.1 Windows NT Alternate Data (NTFS_ALT_STREAM)..64
6.2.2.2 Windows NT Extended Attribute Data (NTFS_EA_STREAM)...65
6.2.2.3 Windows NT Security Data (NT_SECURITY_STREAM)..65
6.2.2.4 Windows NT Encrypted Data (NT_ENCRYPTED_STREAM)...65
6.2.2.5 Windows NT Quota Data (NT_QUOTA_STREAM)...65
6.2.2.6 Windows NT Property Data (NT_PROPERTY_STREAM)...65
6.2.2.7 Windows NT Reparse Data (NT_REPARSE_STREAM)..65
6.2.2.8 Windows NT Object ID Data (NT_OBJECT_ID_STREAM)..65

6.2.3 Windows 95 Stream Data ... 65
6.2.3.1 Windows 95 Registry Stream (WIN95_REGISTRY_STREAM)...65

6.2.4 NetWare Stream Data ... 66
6.2.4.1 NetWare Trustee Information (NETWARE_386_TRUSTEE_STREAM)...66
6.2.4.2 NetWare Bindery (NETWARE_BINDERY_STREAM)..67
6.2.4.3 NetWare SMS Data Format (NETWARE_SMS_DATA_STREAM) ..67

6.2.5 OS/2 Stream Data .. 67
6.2.6 Macintosh Stream Data .. 68

6.2.6.1 Macintosh Resource Stream (MAC_RESOURCE_STREAM)..68
6.2.6.2 Macintosh Privilege Stream (MAC_PRIVILEGE_STREAM)...68
6.2.6.3 Macintosh Info Stream (MAC_INFO_STREAM)..69

6.3 VARIABLE LENGTH STREAMS...69
6.4 DATA COMPRESSION..70

6.4.1 Compression Frame Header (MTF_CMP_HDR) .. 70
6.5 DATA ENCRYPTION ..71

6.5.1 Encryption Frame Header (MTF_ENC_HDR)... 72

7. MEDIA BASED CATALOG.. 75

7.1 CONTROL BITS..75
7.2 STATUS BITS..76
7.3 TYPE 1 MBC..77

7.3.1 Physical Layout .. 77
7.3.2 File/Directory Detail... 77

7.3.2.1 FDD Physical Layout ..78
7.3.2.2 FDD Common Header...78
7.3.2.3 FDD Entries ...79

7.3.2.3.1 FDD Volume Entry (MTF_FDD_VOLB)..80
7.3.2.3.2 FDD Directory Entry (MTF_FDD_DIRB)...81
7.3.2.3.3 FDD File Entry (MTF_FDD_FILE)...82
7.3.2.3.4 End of FDD Entry (MTF_FDD_FEND) ..83

7.3.3 Set Map.. 84
7.3.3.1 Set Map Physical Layout ...84
7.3.3.2 Set Map Header (MTF_SM_HDR) ..84

Table of Contents

Copyright 1997 Seagate Software, Inc.
9/15/00 Page 5

7.3.3.3 Set Map Entry (MTF_SM_ENTRY)...84
7.3.3.4 Volume Entry ...87
7.3.3.5 End of Media Issues ...87

7.4 TYPE 2 MBC..88
7.4.1 Set Map ..88
7.4.2 File/Directory Detail ...89
7.4.3 End of Media Issues ...89

8. END OF MEDIA PROCESSING..91

APPENDIX A..OPERATING SYSTEM SPECIFIC DATA

APPENDIX B .. PASSWORD ENCRYPTION ALGORITHM

APPENDIX C... DATA COMPRESSION ALGORITHM

APPENDIX D.. IMPLEMENTATION ISSUES

APPENDIX E... OPTICAL MEDIA FRAMEWORK

Table of Contents

Copyright 1997 Seagate Software, Inc.
9/15/00 Page 7

Table of Figures
FIGURE 1. MEDIA FAMILY ...13
FIGURE 2. DESCRIPTOR BLOCK LAYOUT ...14
FIGURE 3. DETAILED DESCRIPTOR BLOCK ..15
FIGURE 4. DATA STREAMS...17
FIGURE 5. MEDIA LAYOUT ..18
FIGURE 6. MEDIA HEADER...18
FIGURE 7. DATA SET ..19
FIGURE 8. IMPLIED PRECEDENCE ..20
FIGURE 9. THE EFFECT OF SPANNING PHYSICAL BLOCK ADDRESS AND FORMAT LOGICAL ADDRESSES...21
FIGURE 10. PHYSICAL BLOCK AND FORMAT LOGICAL BLOCK BOUNDARIES...23
FIGURE 11. CALCULATING PHYSICAL BLOCK ADDRESSES...23
FIGURE 12. STREAM ALIGNMENT FACTOR..24
FIGURE 13. WITH END OF SET PAD DESCRIPTOR BLOCK ...24
FIGURE 14. WITHOUT END OF SET PAD DESCRIPTOR BLOCK ..25
FIGURE 15. BITWISE ORGANIZATION OF MTF_DATE_TIME...28
FIGURE 16. EXAMPLE DATA AND TIME IN MTF_DATE_TIME FORMAT ...28
FIGURE 17. SOFT FILEMARK BLOCK LAYOUT ...58
FIGURE 18. DATA STREAMS...59
FIGURE 19. CHECKSUM STREAM ..63
FIGURE 20. WINDOWS 95 REGISTRY STREAM ..64
FIGURE 21. WINDOWS 95 REGISTRY STREAM ..66
FIGURE 22. NETWARE BINDERY STREAM...67
FIGURE 23. VARIABLE LENGTH STREAMS..70
FIGURE 24. PHYSICAL LAYOUT OF TYPE 1 MBC FDD AND SET MAP STREAMS..77
FIGURE 25. PHYSICAL LAYOUT OF TYPE 2 MBC SET MAP AND FDD STREAMS..88
FIGURE 26. TYPE 2 MBC SET MAP EXAMPLE..88
FIGURE 27. TYPE 2 MBC FDD EXAMPLE...89
FIGURE 28. TYPE 2 MBC SPANNING..89
FIGURE 29. OS ID AND OS VERSION MATRIX ...99
FIGURE 30. OPTICAL MEDIA FRAMEWORK.. 115
FIGURE 31. MULTIPLE OPTICAL FILEMARK TABLES... 116

Introduction

Copyright 1997 Seagate Software, Inc.
9/15/00 Page 9

1. Introduction
This document describes the logical data format used in Microsoft Tape Format (MTF). Media types which can use this data
format include magnetic tapes of many types (QIC, 4mm DAT, 8mm, DLT, etc.), optical disks (Power Drive, CD-ROM),
magnetic disks, etc. MTF is used while writing and reading data to and from removable storage devices during storage
management or data protection operations such as data transfers, copies, backup and restore.

Throughout this document, the term “tape” is used when referring to the removable media. Tapes are shown in most of the
diagrams depicting the physical layout of data. Even some of the data structures include the name “TAPE”. Keep in mind that
disk based media is equally suitable for MTF and tape is used only as an example, and because this specification originated as
a tape format specification before optical disk media became a viable solution for storage management.

This format is compatible with the data format used in the NT Backup applet program that comes bundled with Microsoft®

Windows NT™ version 3.X and 4.X.

1.1 Who Should Read This Document
This document should be read by anyone who needs to understand or implement the Microsoft Tape Format. It is expected that
the reader have a general knowledge of storage management operations, tape drives and file systems. Knowledge of tape data
formats is helpful but not required.

1.2 Document Layout
This document is Revision 1.00a of the Microsoft Tape Format Specification. It is a refinement of the Microsoft Tape Format
Version 1.0 Specification. While the design of MTF Version 1.00a will remain unchanged, future updates and revisions to this
document will continue to be made in an effort to describe the specification as clearly and accurately as possible.

Section 1 Introduction, provides an introduction to the Microsoft Tape Format (MTF).

Section 2 Design Goals, describing the capabilities inherent in the MTF.

Section 3 Format Description, provides a broad look at the organization of MTF, covering material such as Data Sets, the
fundamental building blocks of MTF called “Descriptor Blocks”, the use of data streams, the Media Based
Catalog, filemarks, the physical and logical characteristics of the format, and spanning Data Sets across multiple
media (tapes or disks).

Section 4 Support Structures , provides detailed definition of support structures used throughout MTF.

Section 5 Descriptor Blocks, provides detailed definition of Descriptor Blocks.

Section 6 Data Streams, provides detailed definitions of Data Streams.

Section 7 Media Based Catalog, provides detailed definitions of Type 1 and Type 2 Media Based Catalogs.

Section 8 End Of Media Processing , provides a detailed description of End Of Media Processing.

The Appendices, include detailed information on Operating System Specific Data, Password Encryption Algorithm, Data
Compression Algorithm, and Implementation Issues.

Design Goals

Copyright 1997 Seagate Software, Inc.
9/15/00 Page 11

2. Design Goals
This sections describes the design goals employed in the development of the Microsoft Tape Format.

• Fast retrieval of stored data.

• Low processing overhead to ensure optimum performance on low-end systems and devices. This is accomplished by
careful design of the control structures to reduce the amount of interpretation the application software needs to do.

• Allows applications to ignore information on the media that is not understood by the target operating system. This
feature makes it possible to restore data across platforms (e.g., data backed up on an Apple Macintosh system may be
restored to a DOS system, ignoring the resource fork which DOS does not understand).

• The ability to extend the format for specialized processing by adding new DBLKs and data streams without rendering
the format unreadable by other applications. Applications which are not aware of the extensions can easily skip over
them, both increasing backward/forward compatibility, and allowing the restoration of data from media created by
another vendor's application.

• Data structures are arranged so that 32-bit values are aligned on 32-bit boundaries, and 16-bit values are aligned on 16-
bit boundaries. This is important because some processors require this alignment to run at maximum efficiency. By
making sure this alignment is followed it is easier for the implementor to map these structures directly onto data buffers.

• Reliable end of media handling.

• The ability to restore any remaining portion of a Data Set which spans multiple media (tapes or disks) in the event one
or more media is lost or damaged.

• Format support to deal with corrupt files encountered on the primary storage volume that is being written to removable
media.

• Support for unlimited directory path and file name lengths.

• 64-bit file data sizes.

• Allows the application to take full advantage of a drive's capabilities (e.g., Block Seek, Fast Seek to End of Data, etc.)
without hindering less capable drives.

Format Description

Copyright 1997 Seagate Software, Inc.
9/15/00 Page 13

3. Format Description
This section presents an overview of the Microsoft Tape Format (MTF). It discusses the fundamental elements that are used in
data management operations and how they are organized. This information provides the foundation from which the rest the
this document will build.

3.1 Data Sets
When a collection of objects are written to removable storage media (tape, optical disk, etc.) during a data management
operation such as a backup, transfer or copy, it is stored as a Data Set. A medium may contain more than one Data Set and a
Data Set may span from one medium to another. The diagrams that follow use tapes as the medium type. The term Media
Family refers to a collection of one or more Data Sets appended together and spanning one or more individual tapes or media.
The diagram below is a simplified picture of how Data Sets are placed on one or more media.

Tape 1

Data Set
#1

Data Set
#2

Data Set
#3

Tape 2

Data Set
#3 (continued)

Data Set
#4

 Data Set
 # 'n'

Figure 1. Media Family

3.2 Fundamental Elements
The fundamental elements of MTF are Descriptor Blocks, Data Streams, and Filemarks. Descriptor Blocks are used for
format control, Data Streams are associated with Descriptor Blocks to provide data encapsulation and alignment, and
filemarks are used for logical separation and fast positioning within a media.

3.2.1 Descriptor Blocks
Descriptor Blocks are the primary building blocks on which MTF is founded. Throughout this document a Descriptor Block
will be abbreviated to DBLK. MTF defines many DBLKs each of which is uniquely suited for the role it was defined.

Format Description

Copyright 1997 Seagate Software, Inc.
Page 14 10/1/98

3.2.1.1 Descriptor Block Anatomy
A DBLK is essentially a variable length block of data that is divided into four parts. The first is the Common Block Header
which is fixed length structure that is common to all DBLKs. The second is the Fixed Length DBLK Information that is
specific to the type of DBLK being defined. The third is the Operating System Specific Data that is defined based on the
type of DBLK and Operating System. The fourth and last is the Variable Length DBLK Specific Information which
contains variable length that cannot be stored with the Fixed Length DBLK Information. Of the four parts listed, only the
Common Block Header is required.

Common Block Header
(required)

Fixed Length DBLK Information
(optional)

Operating System Specific
Data (optional)

Variable Length DBLK Specific
Information (optional)

DBLK

Figure 2. Descriptor Block Layout

3.2.1.1.1 Common Block Header
The Common Block Header is at the beginning of each DBLK and includes general information about the DBLK. The
Common Block Header includes a link to the Operating System Specific Data section. For a detailed description of the
Common Block Header, see the Chapter on Descriptor Blocks.

3.2.1.1.2 Fixed Lenght DBLK Information
The Fixed Length DBLK Information follows the Common Block Header and contains information that is unique to the
type of DBLK defined. The Fixed Length DBLK Information is a fixed length for each DBLK type and may contain
links into the Variable Length DBLK Specific Information section. The Fixed Length DBLK Information is optional
and may be omitted if the defined DBLK type contains no unique information. For a detailed description of the defined
Descriptor Blocks, see the Chapter on Descriptor Blocks.

3.2.1.1.3 Operating System Specific Data
The Operating System Specific Data may optionally contain variable length information that is specific to the type of
DBLK and Operating System. For a detailed description of Operating System Specific Data, see Appendix A .

3.2.1.1.4 Variable Length DBLK Specific Information
The Variable Length DBLK Specific Information may optionally contain variable length information that is specific to
the type of DBLK. The information stored in the Variable Length DBLK Specific Information is referenced through
links in the Fixed Length DBLK Information.

Format Description

Copyright 1997 Seagate Software, Inc.
9/15/00 Page 15

3.2.1.1.5 Detailed Descriptor Block Layout
The following figure shows a detailed layout of a generic Descriptor Block. The MTF Tape Address sub-structure in
the Common Block Header is the link to the Operating System Specific Information section. The MTF Tape Address
sub-structure in the Fixed Length DBLK Specific Information is the link(s) to the Variable Length DBLK Specific
Information section.

Variable Length DBLK Specific
Information (optional)

field of length 'X'

fixed minimum
DBLK length

fixed length

variable length

variable length

Fixed Lenght DBLK Specific
Information (optional)

MTF Tape Address

Common Block Header (required)

Operating System Specific Data
(optional)

4 bytes
One Alignment
Factor maximum
length

MTF Tape Address 4 bytes

field of 'Y'

X bytes

Y bytes

MTF Tape Address

Offsets to start of strings

Offset to start of OS
specific area

4 bytes

Figure 3. Detailed Descriptor Block

3.2.1.2 Defined Descriptor Blocks
MTF defines a number of Descriptor Blocks which are used to control the placement of data in a data management
operation. The following is a general overview the DBLKs currently defined for MTF. New DBLKs will be defined by the
MTF Review Committee in the future as the need arises.

3.2.1.2.1 Tape Header Descriptor Block
The Tape Header Descriptor Block (MTF_TAPE DBLK) is located at the front of each media. The MTF_TAPE
DBLK describes the contents of the media. This information includes a unique identifier to indicate the Media Family
to which the media belongs, the sequence number of the media in the Media Family, and a name string for user
identification, as well as other information needed to interpret the data on the media. Information about the presence,
and type of Media Based Catalogs is available here.

Format Description

Copyright 1997 Seagate Software, Inc.
Page 16 10/1/98

Note: Despite the name of this DBLK, it is used on tape, optical disk, or other types of removable storage media.

3.2.1.2.2 Start of Data Set Descriptor Block
The Start of Data Set Descriptor Block (MTF_SSET DBLK) is located at the front of each Data Set. It contains
information that describes the Data Set such as the name, a user description, the password, a sequence number, the date
and time that data began being written to media, and the type of data management operation (transfer, copy, normal
backup, differential backup, etc.) used to create the Data Set.

3.2.1.2.3 Volume Descriptor Block
The Volume Descriptor Block (MTF_VOLB DBLK) describes a volume which is being written to the media. This
includes the device name, volume name, machine name and media write date.

3.2.1.2.4 Directory Descriptor Block
The Directory Descriptor Block (MTF_DIRB DBLK) describes the full path of the directory being written to media.
This includes the directory name, the directory creation date and time, the last modification date, backup date, last
access date and directory attributes such as read only.

3.2.1.2.5 File Descriptor Block
The File Descriptor Block (MTF_FILE DBLK) describes the file which is being written to media and is followed by the
actual file data. The MTF_FILE DBLK contains information such as the file name, file size, the date and time the file
was created, last accessed and last modified, and file attributes such as read only, hidden, system, etc.

3.2.1.2.6 Corrupt Object Descriptor Block
It is often the case that a DBLK has already been written when it is discovered that not all of its associated data can be
read due to disk corruption, network failure, etc. When this condition occurs, the portions of the stream that could not
be read are padded to maintain the correct stream size.

A Corrupt Object Descriptor Block (MTF_CFIL DBLK) is then written to indicate that the data associated with the
previous DBLK is corrupt. The MTF_CFIL DBLK contains fields for the stream number and the byte offset in that
stream where the corruption began.

3.2.1.2.7 End of Set Pad Descriptor Block
The End of Set Pad Descriptor Block (MTF_ESPB DBLK) is only used when the physical block size of the device is
larger than the format logical block size. The MTF_ESPB DBLK is an optional method used at the end of a Data Set to
fill the gap to the next physical block boundary. Alternately, the SPAD associated with the last DBLK can be extended
to the next physical block boundary.

Note: Format Logical Block is defined in section 3.7.

3.2.1.2.8 End of Set Descriptor Block
All Data Sets end with the End of Set Descriptor Block (MTF_ESET DBLK). Since it is not necessarily known how
many objects will be written in a Data Set when the operation begins, MTF_ESET serves as an indicator to show that
the preceding filemark indicates the end of the Data Set. It also contains information which isn't available until the data
management operation is complete, such as the number of corrupt objects written to the media.

3.2.1.2.9 End of Tape Marker Descriptor Block
The End of Tape Marker Descriptor Block (MTF_EOTM DBLK) is the last DBLK written to a "full" media. As with
the MTF_ESET, the MTF_EOTM serves primarily as an indicator, but does contain information necessary for fast
access of Media Based Catalogs.

Format Description

Copyright 1997 Seagate Software, Inc.
9/15/00 Page 17

3.2.1.2.10 Soft Filemark Descriptor Block
The Soft Filemark Descriptor Block (MTF_SFMB DBLK) is used to emulate filemarks when hardware support is not
available.

3.2.2 Data Streams
Data Streams are used to encapsulate data. This encapsulated data can then be associated with a Descriptor Block. A Data
Stream is comprised of a Stream Header followed by the Steam Data. A field within the Stream Header defines the type of
Stream Data that will follow. Only one type of Stream Data can be encapsulated by a Stream Header. The segregation of
different Stream Data types provides a means of separating platform independent data from platform specific data. For a
detailed description, see the section on Data Streams.

FILE
DBLK

S
H Stream Data

4 byte Stream
Alignment

4 byte Stream
Alignment

NTEA
Stream Header
STREAM_CHECKSUMED

S
H

Checksum
for NTEA
Stream Data

S
H Stream Data

4 byte Stream
Alignment

CSUM
Stream Header

STAN
Stream Header
STREAM_CHECKSUMED

Figure 4. Data Streams

3.2.3 Filemarks
Filemarks are used for logical separation and fast positioning within a media. If the device being used does not provide
filemarks, the filemarks must be emulated by a device driver or by use of the Soft Filemark Descriptor Block. The placement
of filemarks is discussed in the next section Media Layout.

Format Description

Copyright 1997 Seagate Software, Inc.
Page 18 10/1/98

3.3 Media Layout
MTF defines that a media be divided into a Media Header, one or more Data Sets, and End of Media. The Media Header is
used to uniquely identify the media. The Data Set is used to store a collection of Descriptor Blocks and Data Streams used in a
data management operation. The End of Media is used to span from one media to the next.

Media Header Data Set 1 Data Set 2 End of MediaData Set N

Figure 5. Media Layout

3.3.1 Media Header
The Media Header is used to uniquely identify the media. A Media Header is comprised of a Tape Header Descriptor Block
(MTF_TAPE DBLK), SPAD Data Stream, and filemark. The SPAD Data Stream is used to fill the gap between the
MTF_TAPE DBLK and filemark.

Media Header Data Set 1 Data Set 2 End of MediaData Set N

Media Header

TAPE
DBLK

S
H Stream Data

4 byte Stream
Alignment

SPAD
Stream Header

FILE
MARK

PBA1PBA0

Figure 6. Media Header

Format Description

Copyright 1997 Seagate Software, Inc.
9/15/00 Page 19

3.3.2 Data Sets
A Data Set is comprised of a Start Of Data Set Descriptor Block (MTF_SSET DBLK), the Descriptor Blocks used for the data
management operation, a filemark, End Of Set Descriptor Block (MTF_ESET DBLK), and filemark. Typical Descriptor
Blocks used for a data management operation include the Volume, Directory, and File Descriptor Blocks. The End Of Set
Descriptor may optionally have Media Based Catalog Data Streams associated with it.

Media Header Data Set 1 Data Set 2 End of MediaData Set N

Data Set

SSET
DBLK

S
H Stream Data

4 byte Stream
Alignment

SPAD
Stream Header

FILE
MARKDescriptor Blocks ESET

DBLK
Media Based Catalog
(Optional)

FILE
MARK

Figure 7. Data Set

3.3.2.1 Implied Precedence within a Data Set
It is important to understand that MTF is a linear format and uses Implied Precedence to preserve the parent child
relationship between Descriptor Blocks. That is, the parent child relationship is implied in the definition of the Descriptor
Block and cannot be determined when an unknown Descriptor Block is encountered.

Table 1. Implied Precedence within a Data Set

Parent Child

MTF_SSET MTF_VOLB

MTF_VOLB MTF_SSET MTF_DIRB

MTF_DIRB MTF_VOLB MTF_FILE

MTF_FILE

Format Description

Copyright 1997 Seagate Software, Inc.
Page 20 10/1/98

Take for example the Volume Descriptor Block. Once the Volume Descriptor Block is written to a Data Set, all Directory
and File Descriptor Blocks that follow are children of that Volume Descriptor Block until another Volume Descriptor
Block is written. The same is also true of the Directory Descriptor Block. When a Directory Descriptor Block is written to
a Data Set, all File Descriptor Blocks that follow are children of that Directory Descriptor Block until another Directory
Descriptor Block is written.

DIRB
DBLK

S
H

Stream
Data

SPAD
Stream Header

S
H

Stream
Data

FILE
DBLK

S
H

STAN
Stream Header

Stream
Data

SPAD
Stream Header

S
H

Stream
Data

FILE
DBLK

S
H

STAN
Stream Header

Stream
Data

SPAD
Stream Header

DIRB
DBLK

S
H

Both MTF_FILE DBLKs are children of
the previous MTF_DIRB DBLK

Figure 8. Implied Precedence

3.3.2.2 Media Based Catalogs
The Media Based Catalog provides a quick method of locating Data Sets and specific objects within each Data Set. The
abbreviation “MBC” is used throughout this specification to refer to Media Based Catalog. The MBC consists of two parts,
a File/Directory Detail that provides specific information about the contents of a single Data Set, and the Set Map which
provides cumulative information about all the Data Sets on a Media Family. Both the File/Directory Detail and the Set
Map are stored as data streams associated with the MTF_ESET. For a detailed description see the section on Media Based
Catalogs.

A Set Map may exist on tape without a File/Directory Detail. However, a File/Directory Detail can only exist if a Set Map
is also present. The File/Directory Detail and Set Map must be data streams associated with a single MTF_ESET.

The Microsoft Tape Format has been designed not to require the use of Media Based Catalogs for access to objects stored
on removable media. However, the use of the MBC is strongly recommended because it provides much faster access to
information about objects on the media and to the actual data objects themselves.

3.3.3 End of Media
When the End of Media (tape or disk) is reached while writing a Data Set, a filemark is placed on the medium followed by an
MTF_EOTM DBLK and another filemark. The write operation continues on the next medium which is called a “continuation”
medium. The process of continuing the Data Set from one medium to another is called “spanning”.

The figure below is an example of a Data Set containing directories and files that spans from one tape to another in the middle
of a data stream following a MTF_FILE DBLK. The span point occurs at Format Logical Address 154 in the data stream for
FILE “R”. You can see that the data stream continues at FLA 154 on the next tape. Only the unwritten portion of the data
stream is placed on the next medium. In this example, the physical block size is 1024 bytes, filemarks are the same length as
the physical block size, and the Format Logical Block size is 512 bytes.

Continuation DBLKs are necessary on the continuation medium. The MTF_SSET, MTF_VOLB, MTF_DIRB, and
MTF_FILE DBLKs that describe the spanning set, volume and directory and file respectively must be repeated on the
continuation tape. Notice that the Physical Block Addresses do not continue on the second tape like the Format Logical
Addresses do. This is because PBAs are controlled by the tape device which knows nothing of spanning, whereas Format
Logical Addresses are controlled by MTF and are continuous for an entire Data Set regardless of the number of tapes required
to hold it. The Format Logical Address of the continuation DBLKs must be calculated using the Format Logical Address at the
span point and the number of continuation DBLKs that precede the continuation span point. For example, the FLA of the
MTF_VOLB DBLK (151) on the continuation tape is calculated by subtracting 3 from the FLA of the continuation span point
(154).

Format Description

Copyright 1997 Seagate Software, Inc.
9/15/00 Page 21

PBA 7

PBA 8735PBA 8733

SSET
DBLK

VOLB
DBLK

DIRB A
DBLK FILE MARK

EOTM
DBLK

PBA 8732 PBA 8808 PBA 8809 PBA 8810

FLB0 FBL1 FLB2 FLB3 FLB6 FLB152FLB151 FLB153 FLB155FLB154 FLB156

SSET
DBLK
(cont)

VOLB
DBLK
(cont)

DIRB C
DBLK
(cont)

FILE S
DBLK

FILE S
DATA STREAM

FILE R
DATA STREAM

(cont)

PBA 2 PBA 3 PBA 5 PBA 6

FLB150 FLB151 FLB152 FLB153 FLB155 FLB156 FLB158FLB157

TAPE
DBLK FILE MARK

PBA 0 PBA 1

FLB154

PBA 4

DIRB B
DBLK

DIRB C
DBLK

FILE A
DBLK

FILE A
Data Stream

FILE R
DBLK

FILE R
Data Stream

additional
alignment

indexes

FLB5FLB4

PBA 8734

FILE R
DBLK
(cont)

PBA 8811

FILE MARK

FLB159 FLB160

Figure 9. The Effect of Spanning Physical Block Address and Format Logical Addresses

The above example is just one way in which an End Of Media condition can occur. Appendix J is devoted to the different End
Of Media conditions and how spanning is handled in MTF. There are actually two methods of handling the continuation
DBLKs. The first method, which is shown in the above example, uses a single MTF_DIRB DBLK (DIRB C) prior to the span
point. This is allowed because the path information with the nested directory structure is contained in every MTF_DIRB
DBLK. The second method, not shown here, includes every MTF_DIRB DBLK (DIRB A, DIRB B, DIRB C) describing each
element of the path at the span point.

Format Description

Copyright 1997 Seagate Software, Inc.
Page 22 10/1/98

3.4 Addressing
This section describes what a physical block is and how physical block addressing is performed as well as format logical block
addressing and how to calculate a physical block address of a given Descriptor Block in a Data Set.

3.4.1 Physical Block
The term "physical block" refers to the minimum number of bytes which can be written to the removable storage medium by
the device. The size of a physical block varies from one device to the next. Many tape devices now offer the ability to request
the current position of the tape in terms of a physical block offset. We refer to this position in MTF as a Physical Block
Address, abbreviated PBA. These devices also have the ability to seek to a given PBA at a much faster rate than older tape
devices which required rewinding and reading out to the same position.

MTF requires the ability to calculate the PBA of a given object in a Data Set given the PBA of the start of the Data Set, and the
data offset of the object. In other words, PBAs between filemarks must be sequential. It is also required that all device drivers
for a given device report the same PBA for any given location on the media. Given a PBA, all device drivers must seek to the
same location on the media. Note that many devices do not directly support calculating PBAs in this manner. As a result, it is
up to the software and/or device driver to ensure this. Refer to Appendix L for details on how this is accomplished on a
specific device.

When a device writes a physical block to media, the physical block typically contains header information, data from the host
computer, CRC information and ECC. The header, CRC and ECC information are automatically added by the device. The
Microsoft Tape Format is only concerned with the data portion of the physical block that is written by the device and its
physical address (PBA). When we talk about a Physical Block Address, we are referring to the address used by the tape device
to identify and locate the data contained within that physical block.

3.4.2 Format Logical Block
If the PBA of every DBLK written to tape were stored in a catalog on primary disk, it would greatly reduce the time required to
restore selected files from various places on the storage media. However, this method poses a problem: it would require all
DBLKs to be aligned on physical block boundaries, resulting in a significant waste of space. On a device with a physical block
size of eight kilobytes, several kilobytes of wasted space would result for each DBLK written. It would also require requesting
this position prior to writing each object which would increase the time required to perform the write operation. For this
reason, the concept of a Format Logical Block is introduced. Figure 3-6 shows several DBLKs belonging to the Data Set
located within just two physical blocks with little wasted space. This is possible through the use of a Format Logical Block.

The MTF_SSET DBLK at the beginning of every Data Set always follows a filemark and thus is always aligned on a physical
block boundary. Its PBA is obtained from the tape device driver and stored within the MTF_SSET DBLK. All DBLKs must
be aligned on a Format Logical Block boundary. The size of the Format Logical Block can be 512 or 1024 bytes in MTF Ver.
1.00a. The Format Logical Block size that will be used for a specific medium is written in the MTF_TAPE DBLK at the
beginning of the medium and must be consistent for the entire length of the medium and across an entire Data Set if it spans
media. For example, if 512 bytes is chosen for a tape and the Data Set spans to another tape, the Format Logical Block size on
the next tape must also be 512 bytes, not 1024 bytes.

The location of a specific DBLK can be found within a Data Set by using an address for the Format Logical Block that the
DBLK starts on. This address is called the Format Logical Address and is abbreviated FLA. The Format Logical Address is
the number of Format Logical Blocks from the start of the Data Set and can be thought of as a zero-based index into a Data Set.
The Format Logical Address is a 64-bit unsigned integer. Every DBLK found in a Data Set has a unique FLA that is stored in
the Common Block Header structure of the DBLK itself and in the File/Directory Detail portion of the Media Based Catalog.
When restoring an object (volume, directory, or file), the FLA can be used in conjunction with the PBA of the MTF_SSET to
calculate and seek to the exact location of the desired object's DBLK. For example, the MTF_VOLB DBLK in Figure 3-6 can
be precisely located using the PBA of “y” and the FLA of “1”.

The flexibility within MTF to determine the Format Logical Block size allows vendors to choose a size that optimizes the
speed or storage capacity for the particular storage device being used, and the type of data being written. The smaller Format
Logical Block of 512 bytes results in less wasted space on the media as opposed to the 1024 bytes Format Logical Block.

Format Description

Copyright 1997 Seagate Software, Inc.
9/15/00 Page 23

T
A
P
E

FILE
MARK

PBA x PBA x+1

S
S
E
T

V
O
L
B

D
I
R
B

F
I
L
E

DATA STREAM
SECTION

FLA1 FLA2 FLA3

Format Logical Address

SPAD SPAD SPAD

FLA4

SPAD

FLA7
FLA8

E
S
P
B

FILE
MARK

FLA5 FLA6

SPAD SPAD

PBA y PBA y+1 PBA y+2

FILE
MARK

Data Set

E
S
E
T

SPAD

PBA y+3 PBA y+4

Physical Block Addresses (PBA)

FILE
MARK

Figure 10. Physical Block and Format Logical Block Boundaries

3.4.3 Calculating Physical Block Addresses
One of the MTF design goals was fast retrieval of stored data. Every Descriptor Block in a Data Set contains a Format Logical
Block Address. The following calculation provides the means of determining the Physical Block Address of a Descriptor
Block given the Format Logical Block Address it contains. The result of the calculation is rounded down.

ReqPBA = (Req FLA - SSET FLA) / (Physical Block Size / Format Logical Block Size) + SSET PBA

ReqPBA is the Physical Block Address of the requested Descriptor Block.
ReqFLA is the Format Logical Block Address of the requested Descriptor Block.
SSET FLA is the Format Logical Block Address of the MTF_SSET Descriptor Block (non zero

on spanned next media of a spanned data set).
SSET PBA is the Physical Block Address of the MTF_SSET Descriptor Block.

Figure 11. Calculating Physical Block Addresses

Format Description

Copyright 1997 Seagate Software, Inc.
Page 24 10/1/98

3.5 Alignment
MTF is a linear format that must have Descriptor Blocks and Data Streams aligned on specific boundaries. Descriptor Blocks
are aligned to Format Logical Block Boundaries and Data Stream are aligned to a Stream Alignment Factor. Filemarks are
aligned to a Physical Block Boundary.

3.5.1 Descriptor Blocks
Descriptor Blocks must be aligned on a Format Logical Block Boundary. To do this, all Descriptor Blocks use the SPAD Data
Stream as the last Data Stream associated with the Descriptor Block.

3.5.2 Data Streams
All Data Streams are aligned on a Stream Alignment Factor of four bytes. A fill pattern of zero is used in the four byte Stream
Alignment for C2 security. If the Data Stream is already on a Stream Alignment Factor, no pad is needed. In the figure below,
the File Descriptor Block contains a field Offset To Next Event. This field contains the size of the File Descriptor Block plus
the number of bytes necessary to align the Data Stream to a four byte Stream Alignment Factor.

FILE
DBLK

S
H Stream Data

4 byte Stream
Alignment

4 byte Stream
Alignment

NTEA
Stream Header
STREAM_CHECKSUMED

S
H

Checksum
for NTEA
Stream Data

S
H Stream Data

4 byte Stream
Alignment

CSUM
Stream Header

STAN
Stream Header
STREAM_CHECKSUMED

Figure 12. Stream Alignment Factor

3.5.3 Filemarks
Filemarks are always written on a Physical Block Boundary. The SPAD Data Stream is always used to pad to the next
Physical Block Boundary where the filemark can be written. The End of Set Pad Descriptor Block may optionally be used in a
Data Set prior to the first filemark.

FILE
DBLK

FLA=248FLA=237 PBAX

ESPB
DBLK FILEMARKSPADDATA STREAM

SECTION

SPAD

DATA STREAM
SECTION

SPAD

Figure 13. With End of Set Pad Descriptor Block

Format Description

Copyright 1997 Seagate Software, Inc.
9/15/00 Page 25

FILE
DBLK

FLA=248FLA=237 PBAX

FILEMARKDATA STREAM
SECTION

SPAD

DATA STREAM
SECTION SPAD

Figure 14. Without End of Set Pad Descriptor Block

Support Structures

Copyright 1997 Seagate Software, Inc.
9/15/00 Page 27

4. Support Structures
This section provides detailed information about the support structures used in the higher level MTF structures. These support
structure are an integral part of DBLKs and Stream Headers. The three support structures described below are comprised of
fields of specific length, each having specific functions. They are building blocks used by the higher level structures.

Note: All multi-byte entities are written in INTEL (little endian) format

4.1 UINT64
This low level structure provides a method for specifying an unsigned 64-bit integer value within a DBLK structure.

Offset Content Type Size

 0 0h Least Significant 32-bits UINT32 4 bytes

 4 4h Most Significant 32-bits UINT32 4 bytes

 Structure 1. UINT64

4.2 MTF_TAPE_ADDRESS
The MTF_TAPE_ADDRESS low level structure is used inside the Common Block Header structure and inside many of the
DBLK structures to identify non-fixed length information. The MTF_TAPE_ADDRESS low level structure is 4 bytes in
length consisting of two 2 byte fields. The first field (Size) defines the size of the variable length field being referenced. The
second field (Offset) contains an offset to the start of the field from the beginning of the structure containing the
MTF_TAPE_ADDRESS.

Offset Field Name Type Size

 0 0h Size UINT16 2 bytes

 2 2h Offset UINT16 2 bytes

Structure 2. MTF_TAPE_ADDRESS

Support Structures

Copyright 1997 Seagate Software, Inc.
Page 28 10/1/98

4.3 MTF_DATE_TIME
The MTF_DATE_TIME low level structure uses a single 5 byte field containing a date and a time with resolution down to the
second. One way this structure is used is in the MTF_FILE and MTF_DIRB DBLKs to define specific points in time when
files and directories were created, modified, etc. The MTF_DATE_TIME low level structure is defined as follows. An
unknown or undefined date and time is represented by using zero for all five bytes.

Offset Content Type Size

 0 0h 40-bit packed date and time as
shown below.

UINT8[5] 5 bytes

Structure 3. MTF_DATE_TIME

7 123456 0 7 123456 07 123456 07 123456 07 123456 0

Y
E

A
R

M
O

N
TH

D
A

Y

H
O

U
R

M
IN

U
TE

SEC
O

N
D

Byte 0 Byte 1 Byte 4Byte 3Byte 2

Figure 15. Bitwise Organization of MTF_DATE_TIME

Date = 12/31/1996
Time = 20:07:30

0 111100 1 1 111101 00 000001 10 111110 10 10010 1

1996

12 31 20 07 30

Byte 0 Byte 1 Byte 4Byte 3Byte 2
1

Figure 16. Example Data and Time in MTF_DATE_TIME Format

Descriptor Blocks

Copyright 1997 Seagate Software, Inc.
9/15/00 Page 29

5. Descriptor Blocks
This section provides detailed information about Descriptor Blocks (DBLKs). A more general description of the ways in
which the DBLKs are used in MTF can be found in Section 3, Format Description, without the detail covered here.

5.1 Common Block Header
The Common Block Header (MTF_DB_HDR) structure is found at the start of each DBLK. The MTF_DB_HDR contains
general information required for each DBLK and includes fields describing the type of DBLK, its attributes (continuation,
compression, presence of MBC, etc.), operating system specific information and the displayable size of the object defined by
the DBLK (e.g. file size).

Offset Field Name Type Size

 0 00h DBLK Type UINT32 4 bytes

 4 04h Block Attributes UINT32 4 bytes

 8 08h Offset To First Event UINT16 2 bytes

10 0Ah OS ID UINT8 1 byte

11 0Bh OS Version UINT8 1 byte

12 0Ch Displayable Size UINT64 8 bytes

20 14h Format Logical Address UINT64 8 bytes

28 1Ch Reserved for MBC UINT16 2 bytes

30 1Eh Reserved - - - 6 bytes

36 24h Control Block ID UINT32 4 bytes

40 28h Reserved - - - 4 bytes

44 2Ch OS Specific Data MTF_TAPE_ADDRESS 4 bytes

48 30h String Type UINT8 1 byte

49 31h Reserved - - - 1 byte

50 32h Header Checksum UINT16 2 bytes

Structure 4. Common Block Header (MTF_DB_HDR)

Descriptor Blocks

Copyright 1997 Seagate Software, Inc.
Page 30 10/1/98

DBLK Type {4 bytes}
The DBLK Type field identifies the type of DBLK (MTF_SSET, MTF_VOLB, etc.). Developers may add their own DBLK
types but they must be approved by the MTF Review Committee prior to implementation. Application software must be able
to handle the presence of unknown DBLKs. If an unknown DBLK type is encountered, the application software should use the
information in the MTF_DB_HDR section to skip the information associated with the DBLK.

Note: The values of the IDs were selected such that when viewed as a hex dump, they are easily identifiable in the ASCII
portion and match the names used for them up till this point.

Table 2. Block ID Table

DBLK Name Description Four Character ID Hex Value

MTF_TAPE TAPE descriptor block ‘TAPE’ 0x45504154

MTF_SSET Start of data SET descriptor block ‘SSET’ 0x54455353

MTF_VOLB VOLume descriptor Block ‘VOLB’ 0x424C4F56

MTF_DIRB DIRectory descriptor Block ‘DIRB’ 0x42524944

MTF_FILE FILE descriptor block ‘FILE’ 0x454C4946

MTF_CFIL Corrupt object descriptor block ‘CFIL’ 0x4C494643

MTF_ESPB End of Set Pad descriptor Block ‘ESPB’ 0x42505345

MTF_ESET End of SET descriptor block ‘ESET’ 0x54455345

MTF_EOTM End Of Tape Marker descriptor block ‘EOTM’ 0x4D544F45

MTF_SFMB Soft FileMark descriptor Block ‘SFMB’ 0x424D4653

Descriptor Blocks

Copyright 1997 Seagate Software, Inc.
9/15/00 Page 31

Block Attributes {4 bytes}
The Block Attributes is a 32-bit field used to specify the attributes of a DBLK. The defined bit values for this field are shown
in the table below and discussed in the following table. These attribute bits are directly related to tape format issues.

The least significant 16-bits (BIT0 - BIT15) are valid for any DBLK and the most significant 16-bits (BIT16 - BIT31) are valid
only for the specific DBLK listed in the table. This method allows for multiple definitions for the same bit depending on the
DBLK context. Note that those bits listed as valid in any DBLK may not be valid in all DBLKs, but are used in more than one
type. Missing bits in the 32-bit field are reserved for future use.

Table 3. Block Attributes (MTF_DB_HDR)

Name Description DBLK Type Value

MTF_CONTINUATION Bit set if DBLK is a continuation from the previous tape. any BIT0

MTF_COMPRESSION Bit set if compression may be active. any BIT2

MTF_EOS_AT_EOM Bit set if the End Of Medium was hit during end of set processing. any BIT3

MTF_SET_MAP_EXISTS Bit set if an Media Based Catalog Set Map can be found on the
tape.

MTF_TAPE BIT16

MTF_FDD_ALLOWED Bit set if an attempt will be made to put a Media Based Catalog
File/Directory Detail section on the tape.

MTF_TAPE BIT17

MTF_FDD_EXISTS Bit set if a Media Based Catalog File/Directory Detail section has
been successfully put on the tape for this Data Set.

MTF_SSET BIT16

MTF_ENCRYPTION Bit set if encryption is active for the data streams within this Data
Set.

MTF_SSET BIT17

MTF_FDD_ABORTED Bit set if a Media Based Catalog File/Directory Detail section was
aborted for any reason during the write operation.

MTF_ESET BIT16

MTF_END_OF_FAMILY Bit set if the Media Based Catalog Set Map has been aborted.
This condition means that additional Data Sets cannot be
appended to the tape.

MTF_ESET BIT17

MTF_ABORTED_SET Bit set if the Data Set was aborted while being written. This can
happen if a fatal error occurs while writing data, or if the user
terminates the data management operation. An MTF_ESET DBLK
containing this flag is put at the end of the Data Set even if it was
aborted.

MTF_ESET BIT18

MTF_NO_ESET_PBA Bit set if no Data Set ends on this tape (i.e. continuation tape must
follow this tape).

MTF_EOTM BIT16

MTF_INVALID_ESET_PBA Bit set if the Physical Block Address (PBA) of the MTF_ESET is
invalid because the tape drive doesn't support physical block
addressing.

MTF_EOTM BIT17

Note: BIT0 - BIT31 represent the individual bits of a 32-bit value. BIT0 is the least significant bit and BIT31 is the most
significant bit.

Offset To First Event {2 bytes}
The Offset To First Event field is used as an offset from the start of the DBLK to the first data stream associated with the
DBLK. If there are no data streams associated with a DBLK, then this field contains the offset to the next DBLK.

Note: This is used for backwards compatibility with earlier drafts of the MTF Version 1.0 specification. MTF Version 1.00a
specifies that all DBLKs have at least one data stream associated with it and that the last data stream be the SPAD data
stream.

OS ID {2 bytes}
The OS ID field identifies the operating system associated with the information in this DBLK. Values currently defined for
this field and for the OS Version field are listed in Appendix A Operating System Specific Data. Developers may add new
values for this field, but new values must be "registered".

Descriptor Blocks

Copyright 1997 Seagate Software, Inc.
Page 32 10/1/98

OS Version {2 bytes}
The OS Version field identifies the version of the operating system specified in the OS ID field. The “version” specified here is
not a release version of an operating system (as in Windows NT Version 3.5) but rather the version of a structure for
representing OS specific information within DBLKs. See Appendix A Operating System Specific Data for more information.

Displayable Size {8 bytes}
The Displayable Size field uses the UINT64 low level structure to specify the size that may be displayed by an application for
this DBLK. For example, the size of a file would be stored here for MTF_FILE DBLKs. The size displayed to a user may be
different from the physical size of an object and therefore should be used for display purposes only.

Format Logical Address {8 bytes}
The Format Logical Address field also uses the UINT64 low level structure to specify the Format Logical Address (number of
Format Logical Blocks from the first MTF_SSET in this Data Set) of this DBLK. Refer to Section 3.7 for more information on
Format Logical Addresses.

Reserved for MBC {2 bytes}
The Reserved for Media Based Catalog (MBC) field is used to store application specific information in the Type 2 MBC-SLO
Set Map and FDD. This field is set to zero outside of the Type 2 MBC-SLO Set Map and FDD.

Control Block ID {4 bytes}
The Control Block ID field is used for error recovery. The MTF_SSET DBLK has a Control Block ID value of zero. All
subsequent DBLKs within the Data Set will have a Control Block ID one greater than the previous DBLK’s Control Block ID.
Values for this field are only defined for DBLKs within a Data Set from the MTF_SSET to the last DBLK occurring prior to
the MTF_ESET.

OS Specific Data {4 bytes}
The OS Specific Data field uses an MTF_TAPE_ADDRESS low level structure to identify the location and size of an OS
specific structure. The contents of the structure are dependent upon the values of the OS ID and OS Version fields as well as
the type of DBLK. The structures for the identified operating systems and versions are defined in Appendix C.

String Type {1 byte}
The String Type is a single byte field that specifies the format of strings stored in this DBLK. The table below specifies
acceptable values for this field.

Table 4. String Types

Name Description Value

NO_STRINGS Indicates there are no strings associated
with the DBLK.

0

ANSI_STR Indicates that strings are single byte ANSI
code.

1

UNICODE_STR Indicates that strings are two byte Unicode. 2

Header Checksum {2 bytes}
The Header Checksum field is a 16-bit word-wise XOR sum of all the fields of the MTF_DB_HDR except for the checksum
field itself. This field may be used to detect data corruption on tape.

Reserved
Reserved fields should not be used to store information as they are reserved for future use. Reserved fields should be zero
filled.

Descriptor Blocks

Copyright 1997 Seagate Software, Inc.
9/15/00 Page 33

5.1.1 DBLK Specific Attribute Bits
In addition to the attribute field in the DBLK Header, there is an attribute field in the block specific section of all DBLKs
except the MTF_EOTM and MTF_ESPB. These attributes pertain to the content of the data, rather than its layout on tape. For
example, there are bits in the attributes field of the MTF_SSET DBLK indicating what type of data management operation
(transfer, copy, normal backup, incremental backup, etc.) was used to create the Data Set. There are bits in the attributes field
of the MTF_DIRB and MTF_FILE DBLKs that indicate whether the directory or file represented by the DBLK is read only,
hidden, system or has been modified since the last backup.

Definitions of DBLK Specific Attribute Bits and their use can be found in the individual DBLK descriptions that follow. Not
all DBLKs containing this field have bits defined for them at this time. The field was added in anticipation of future use.

There is one thing which all the DBLK specific attribute fields have in common. The high byte of these 32-bit fields (BIT24 -
31) is available for vendor specific attributes. These bits do not have to be registered. It is important to note that, in order to
preserve data interchangeability, the vendor specific bits should not contain information required to properly restore the data.

5.1.2 Strings Within DBLKs
The length of strings within DBLKs is determined by the Size field in the MTF_TAPE_ADDRESS low level structure that
refers to them. Unless otherwise noted, these strings are not NULL terminated and are of the string type specified for that
DBLK in the String Type field of the MTF_DB_HDR.

5.2 DBLK Structures
Descriptor Block structures (DBLKs) are the basic structural components of the Microsoft Tape Format. DBLKs are headers
that provide information necessary to locate and interpret the data on the tape. These DBLKs contain fields, some of which are
low level structures, to describe and identify tapes, Data Sets, and the individual objects (e.g. volume, directories, files, etc.)
that comprise Data Sets.

All DBLKs defined in MTF include the 52 byte Common Block Header (MTF_DB_HDR) structure at the head of the DBLK
structure. The MTF_DB_HDR is typically followed by additional fields and sometimes by an OS Specific Data area and
String Storage area. The maximum length of a DBLK in MTF is 1024 bytes.

Descriptor Blocks

Copyright 1997 Seagate Software, Inc.
Page 34 10/1/98

5.2.1 Tape Header Descriptor Block (MTF_TAPE)
The Tape Header Descriptor Block (MTF_TAPE DBLK) contains general information that applies to the current media.
The MTF_TAPE DBLK is the first block on a media and contains information that is crucial to media families, such as the
media sequence, ID, name, description, etc. Other fields in the MTF_TAPE DBLK identify characteristics of the media that
must remain constant. These characteristics can include the MTF major revision, the Media Based Catalog type used, and the
Format Logical Block size which specifies the byte alignment of all DBLKs written to the media.

Offset Field Name Type Size

 0 0h Common Block Header MTF_DB_HDR 52 bytes

52 34h Media Family ID UINT32 4 bytes

56 38h TAPE Attributes UINT32 4 bytes

60 3Ch Media Sequence Number UINT16 2 bytes

62 3Eh Password Encryption Algorithm UINT16 2 bytes

64 40h Soft Filemark Block Size UINT16 2 bytes

66 42h Media Based Catalog Type UINT16 2 bytes

68 44h Media Name MTF_TAPE_ADDRESS 4 bytes

72 48h Media Description/Media Label MTF_TAPE_ADDRESS 4 bytes

76 4Ch Media Password MTF_TAPE_ADDRESS 4 bytes

80 50h Software Name MTF_TAPE_ADDRESS 4 bytes

84 54h Format Logical Block Size UINT16 2 bytes

86 56h Software Vendor ID UINT16 2 bytes

88 58h Media Date MTF_DATE_TIME 5 bytes

93 5Dh MTF Major Version UINT8 1 byte

Structure 5. Tape Header Descriptor Block (MTF_TAPE)

Common Block Header {52 bytes}
The Common Block Header field is the 52 byte MTF_DB_HDR structure at the beginning of every DBLK. The following
fields of the MTF_DB_HDR structure must be set to the defined value.

• The DBLK Type field is set to ‘TAPE’.

• The Format Logical Address field is set to zero.

• The Control Block ID field is set to zero.

Media Family ID {4 bytes}
The Media Family ID field is a four byte number that identifies the Media Family to which this media belongs. A continuation
media must have the same Media Family ID as the previous media. MTF Version 1.00a does not specify an algorithm for
generating unique Media Family ID numbers.

Descriptor Blocks

Copyright 1997 Seagate Software, Inc.
9/15/00 Page 35

TAPE Attributes {4 bytes}
The TAPE Attributes field is a four byte (32-bit) field specifying attributes that pertain to the content of data on this media.
Bits 0 -1 are defined below. Bits 2 - 23 are reserved for future use, and the most significant 8-bits (BIT24 - BIT31) are
reserved for vendor specific attributes.

Table 5. TAPE Attributes

Name Description Value

TAPE_SOFT_FILEMARK_BIT This bit is set if the soft filemarks are being
used. The Soft Filemark Block Size field
must be set.

BIT0

TAPE_MEDIA_LABEL_BIT This bit is set if the Media Description/Media
Label field contains a Media Label.

BIT1

Reserved (set to zero) BIT2 - BIT23

Vendor Specific BIT24 - BIT31

Media Sequence Number {2 bytes}
The Media Sequence Number field will start at “1” with the first media, and will increment by one for each new media
processed in a Media Family.

Password Encryption Algorithm {2 bytes}
The Password Encryption Algorithm field indicates the algorithm used to encrypt the password data associated with the Media
Password field. Applications should not access media if a password exists and the encryption algorithm is unknown. This
value must be a "registered" encryption algorithm number.

Soft Filemark Block Size {2 bytes}
The Soft Filemark Block Size field contains the size of the Soft Filemark (MTF_SFMB) DBLK in multiples of 512 bytes (e.g.,
a value of 2 equals a MTF_SFMB DBLK size of 1024 bytes). The Soft Filemark Block Size is calculated from the physical
block size as reported by the device driver. The Soft Filemark Block Size is only required for Soft Filemark emulation.

Media Based Catalog Type {2 bytes}
The Media Based Catalog Type field indicates which of the formats described in Appendix B is used for Media Based
Catalogs. The “type” of Media Based Catalog (MBC) must remain consistent across an entire Media Family and is therefore
identified here in the MTF_TAPE DBLK.

There is an MBC “version” defined in the MTF_SSET DBLK which identifies minor version changes for a specific MBC type.

Table 6. Media Based Catalog Types

Name Value

No MBC used 0

Type 1 MBC 1

Type 2 MBC 2

Media Name {4 bytes}
The Media Name field uses the four byte MTF_TAPE_ADDRESS low level structure to specify the location and size of a
string used to identify the media to a user. If no name is associated with the media, then the Size field in the
MTF_TAPE_ADDRESS low level structure will be zero.

Descriptor Blocks

Copyright 1997 Seagate Software, Inc.
Page 36 10/1/98

Media Description/Media Label {4 bytes}
The Media Description/Media Label field also uses the four byte MTF_TAPE_ADDRESS low level structure to specify the
location and size of a Media Description string or a software generated Media Label. If a Media Label is used, the
TAPE_MEDIA_LABEL_BIT of the TAPE Attributes filed is set. If no Description/Label is associated with the media then the
Size field in the MTF_TAPE_ADDRESS low level structure will be zero.

Media Description Definition
A Media Description is used to describe the contents of the media in a human readable form

Media Label Definition
A Media Label is a unique identifier that is generated by an application when a MTF or non MTF media is introduced.
The Media Label is used by the application for media management. Once a unique Media Label is generated by an
application, the application must guarantee that the Media Label is preserved each time the media is overwritten. A Media
Label is comprised of the Tag, Version, Vendor, Vendor ID, Creation Time Stamp, Cartridge Label, Side, Media ID,
Media Domain ID, and Vendor Specific fields. All fields in the Media Label are separated by the ‘|’ character and are of
the alpha numeric type with the inclusion of the following characters ‘+’, ‘-‘, ‘_’, ‘:’, ‘/’, ‘.’, ‘{‘, and ‘}’.

Table 7. Media Label

Name Description

Tag The tag field identifies this as a Media Label. This field is set to the string
“MTF Media Label”.

Version The Media Label version number. This is set to the three characters ‘1.0’.

Vendor The name of the vendor that created the Media Label.

Vendor Product ID The vendor product ID field is used to uniquely identify the product that
generated this Media Label. The vendor product ID is determined by the
vendor. This field is optional. If unused this field is empty.

Creation Time Stamp Date and time the Media Label was originally generated. The creation time
stamp is in the YYYY/MM/DD.HH:MM:SS format.

Cartridge Label The identifier that is printed on the label that is affixed to the cartridge or
the bar code label.

Side The side field contains the current side number of the media. For single
sided media, this field is always set to the character ‘1’. For double sided
media, this field is set to the character ‘1’ on the primary side and the
character ‘2’ on the opposite side.

NOTE: On double sided media, the Tag, Version, Vendor, Vendor Product
ID, Creation Time Stamp, Cartridge Label, Media ID, Media
Domain ID, and Media Domain Name fields must be identical on
both sides.

Media ID The media ID is a globally unique identifier—128-bit integer that is
guaranteed to be unique in the world across space and time. This globally
unique identifier is also known as a UUID (universally unique ID) as
defined by the Open Software Foundation's Distributed Computing
Environment. If this field was not generated using the specified UUID
algorithm, it cannot start with the character ‘{‘.

Media Domain ID The media domain ID is also a UUID. It is used to identify the media
domain in which the media was labeled. A domain is a vendor specific
collection of resources (e.g., a backup server). If this field was not
generated using the specified UUID algorithm, it cannot start with the
character ‘{‘. This field is optional. If unused this field is empty.

Descriptor Blocks

Copyright 1997 Seagate Software, Inc.
9/15/00 Page 37

Vendor Specific Vendor specific extensions to the Media Label. Vendor specific extensions
are optional. All vendor specific extensions start with the three characters
‘VS:’.

Example Media Label:

MTF Media Label|1.0|Seagate|PVL|1996/03/29.18:36:10|AB1234|1|{9EAA3460-89BA-11cf-8A04-
0000C0D9CA0D}|{7E43CEA0-89BA-11cf-8A04-0000C0D9CA 0D}| VS:First Vendor Specific Parameter

Media Password {4 bytes}
The Media Password field uses the MTF_TAPE_ADDRESS low level structure to specify the location and size of a string
containing the password for this media. The associated data will be encrypted using the algorithm specified by the Password
Encryption Algorithm field. If no password is associated with the media, then the Size field in the MTF_TAPE_ADDRESS
structure will be zero.

Software Name {4 bytes}
The Software Name field is an MTF_TAPE_ADDRESS low level structure specifying the location and size of a string
containing the name of the software application that created this media. The Size field of the MTF_TAPE_ADDRESS
structure should never be zero.

Format Logical Block Size {2 bytes}
The Format Logical Block Size is a two byte field used to specify the alignment for all DBLKs on the media. Valid values for
the Format Logical Block Size are 512 and 1024 bytes.

Software Vendor ID {2 bytes}
The Software Vendor ID is a two byte field that identifies the vendor ID of the software application that wrote this media. This
value must be a "registered" software vendor ID number.

Media Date {5 bytes}
The Media Date field uses the five byte MTF_DATE_TIME low level structure which indicates the exact date and time that
this media was first created. The resolution is down to the second.

MTF Major Version {1 byte}
The MTF Major Version is a single byte field used to identify the major version of Microsoft Tape Format used to create this
media. Version numbers start at “1” as in MTF Version 1.00a and increment by one with each major revision. This field
allows for 255 major versions. All sets written to this Media Family must use the same major version of this format.

An MTF Minor Version is identified in the MTF_SSET DBLK. MTF Version 1.00a has a minor version number of “0”.
Minor versions of an MTF Major Version may have differences in the structure of DBLK fields but must maintain backwards
compatibility (i.e. fields cannot be removed, only added). Please refer to the MTF_SSET DBLK description for more
information on this subject.

Table 8. Major Version Numbers

Name Value

MTF Major Version 1

Descriptor Blocks

Copyright 1997 Seagate Software, Inc.
Page 38 10/1/98

5.2.2 Start of Data Set Descriptor Block (MTF_SSET)
The Start of Data Set Descriptor Block (MTF_SSET DBLK) contains information describing the Data Set. The MTF_SSET
DBLK is put at the beginning of an entire Data Set. This structure contains information identifying and describing all
important aspects of the Data Set such as: the Physical Block Address (PBA), user name and password, data management
software version, encryption and compression algorithms used, Data Set number, backup attributes, media write time, time
zone, MTF minor version used, etc.

The organization of the MTF_SSET structure uses a MTF_DB_HDR structure followed by a number of fields and a String
Storage Area. The String Storage Area is used for storing strings such as the name of the Data Set, the user name, etc.

Offset Field Name Type Size

 0 0h Common Block Header MTF_DB_HDR 52 bytes

52 34h SSET Attributes UINT32 4 bytes

56 38h Password Encryption Algorithm UINT16 2 bytes

58 3Ah Software Compression Algorithm UINT16 2 bytes

60 3Ch Software Vendor ID UINT16 2 bytes

62 3Eh Data Set Number UINT16 2 bytes

64 40h Data Set Name MTF_TAPE_ADDRESS 4 bytes

68 44h Data Set Description MTF_TAPE_ADDRESS 4 bytes

72 48h Data Set Password MTF_TAPE_ADDRESS 4 bytes

76 4Ch User Name MTF_TAPE_ADDRESS 4 bytes

80 50h Physical Block Address (PBA) UINT64 8 bytes

88 58h Media Write Date MTF_DATE_TIME 5 bytes

93 5Dh Software Major Version UINT8 1 byte

94 5Eh Software Minor Version UINT8 1 byte

95 5Fh Time Zone INT8 1 byte

96 60h MTF Minor Version UINT8 1 byte

97 61h Media Catalog Version UINT8 1 byte

Structure 6. Start of Set Descriptor Block (MTF_SSET)

Common Block Header {52 bytes}
The Common Block Header field is the 52 byte MTF_DB_HDR structure at the beginning of every DBLK. The DBLK Type
field within the MTF_DB_HDR will be set to ‘SSET’.

SSET Attributes {4 bytes}
The SSET Attributes field is four bytes in length organized as a 32-bit field. Only Bits 0 - 5 are defined at this time. Bits 1 - 5
are used to specify what type of backup operation was used to create the Data Set immediately following the MTF_SSET
DBLK on the media. Possible operation types include, copy, normal backup, differential backup, incremental backup and daily
backup. Only one of these five bits should be set for a given Data Set. In the descriptions that follow, the “modified” flag
(describing whether a file has been created or modified) is mentioned. Another name for this is the “archive” flag. Bits 6 - 23
of this field are reserved for future use.

Descriptor Blocks

Copyright 1997 Seagate Software, Inc.
9/15/00 Page 39

Table 9. SSET Attributes

Name Description Value

SSET_TRANSFER_BIT This bit is set if the data management operation is
a “transfer”. It indicates that the files in this Data
Set were removed from the source media after the
operation was completed.

BIT0

SSET_COPY_BIT This bit is set if the operation is a “copy”. The
copy method copies all selected files from the
primary storage to the media. The file’s “modified”
flag IS NOT reset afterwards.

BIT1

SSET_NORMAL_BIT This bit is set if the backup type is “normal”. The
normal backup method backs up all selected files.
The file’s “modified” flag IS reset afterwards.

BIT2

SSET_DIFFERENTIAL_BIT This bit is set if the backup type is “differential”.
The differential backup method only backs up
selected files having their “modified” flag set. The
file’s “modified” flag IS NOT reset afterwards.

BIT3

SSET_INCREMENTAL_BIT This bit is set if the backup type is “incremental”.
The incremental backup method only backs up
selected files having their “modified” flag set. The
file’s “modified” flag IS reset afterwards.

BIT4

SSET_DAILY_BIT This bit is set if the backup type is “daily”. The
daily backup method only backs up selected files
created or modified with today’s date. The file’s
“modified” flag IS NOT reset afterwards.

BIT5

Reserved (set to zero) BIT6 - BIT23

Vendor Specific BIT24 - BIT31

Password Encryption Algorithm {2 bytes}
The Password Encryption Algorithm field is a two byte field indicating the ID of the algorithm used to encrypt the Data Set
Password field. Applications should not access media if a password exists and the encryption algorithm is unknown. This
value must be a "registered" encryption algorithm number.

Software Compression Algorithm {2 bytes}
The Software Compression Algorithm field is also a two byte field indicating the ID of the algorithm used to compress the data
streams associated with all DBLKs within the Data Set. This 2 byte value must be a "registered" compression algorithm
number.

Note: If the MTF_COMPRESSION bit in the Block Attributes field of the Common Block Header is set and the Software
Compression Algorithm field is zero, the software compression algorithm used cannot be determined until the first
compressed Stream Header is encountered.

Software Vendor ID {2 bytes}
The Software Vendor ID field identifies the vendor of the software that wrote this Data Set. This value must be a "registered"
software vendor ID number.

Data Set Number {2 bytes}
The Data Set Number field is a two byte field containing the ID number corresponding to this Data Set. Data Set Numbers
start at “one” (0x01) with the first Data Set in the Media Family, and are incremented by one for each new Data Set appended
to the Media Family. When a Data Set continues on a new media, the MTF_CONTINUATION bit in the Block Attributes field
of the MTF_DB_HDR structure of the MTF_SSET DBLK will be set, but the Data Set Number will remain the same.

Descriptor Blocks

Copyright 1997 Seagate Software, Inc.
Page 40 10/1/98

Data Set Name {4 bytes}
The Data Set Name field uses the 4 byte MTF_TAPE_ADDRESS low level structure to specify the size and location of a
string. This string, located in the String Storage Area, contains the user name given to the Data Set. If no name is associated
with the Data Set, then the Size field of the MTF_TAPE_ADDRESS structure will be zero.

Data Set Description {4 bytes}
The Data Set Description field uses the 4 byte MTF_TAPE_ADDRESS low level structure to specify the size and location of a
string containing a description of the Data Set for the user. If no description is associated with the Data Set, then the Size field
in the MTF_TAPE_ADDRESS structure will be zero.

Data Set Password {4 bytes}
The Data Set Password field uses the MTF_TAPE_ADDRESS low level structure to specify the size and location of a string
containing the password for this Data Set. The associated data in the string will be encrypted using the algorithm specified by
the Password Encryption Algorithm field. If no password is associated with the Data Set, then the Size field in the
MTF_TAPE_ADDRESS structure will be zero.

User Name {4 bytes}
The User Name field uses the MTF_TAPE_ADDRESS low level structure to specify the size and location of a string indicating
the user name of the account that generated this Data Set. If no user name is associated with the Data Set, then the Size field in
the MTF_TAPE_ADDRESS structure will be zero.

Physical Block Address (PBA) {8 bytes}
The Physical Block Address (PBA) field uses a UINT64 structure to specify the Physical Block Address of this MTF_SSET
DBLK. PBAs are obtained from the device. It is critical that all software and/or device drivers conform to the same rules for
generating PBAs. Refer to section 3.6 for a general description of PBAs, and to Appendix L for device specific details.

Media Write Date {5 bytes}
The Media Write Date field uses the five byte MTF_DATE_TIME low level structure to indicate the exact date and time that
this Data Set was created.

Software Major Version {1 byte}
The Software Major Version is a one byte field used to specify the major version number of the software application used to
create this Data Set. For instance, this field would contain the integer “3” if Ultimate Enterprise Backup Ver. 3.1 was used to
create the Data Set.

Software Minor Version {1 byte}
The Software Minor Version is another 1 byte field which specifies the minor version number of the software application used
to create the Data Set. This field would contain the value “1” using the example described above. The major and minor
software versions are vendor specific and must have integer values in the range of 0 to 255.

Time Zone {1 byte}
The Time Zone field is a single byte that indicates the difference between the local time and UCT. This difference is stored as
the number of fifteen minute intervals between the two time zones. Therefore, the value of this field must be between -48 and
+48. (i.e. EST is -20 since it is five hours after UCT). If time values are not coordinated with UCT, then this field must be set
to “127”.

Table 10. Time Zones

Name Description Value

LOCAL_TZ Indicates that local time is not coordinated with UCT. 127

Descriptor Blocks

Copyright 1997 Seagate Software, Inc.
9/15/00 Page 41

MTF Minor Version {1 byte}
The MTF Minor Version field is a single byte field indicating the minor version of a major MTF version. For example, MTF
Version 2.3 would have a minor version of “3”. The minor version can vary from one Data Set to another and is therefore
identified in the MTF_SSET DBLK, whereas the major version must remain consistent for an entire media and is therefore
identified in the MTF_TAPE DBLK.

If additional fields are added to a DBLK, then the MTF minor version will be increased. No fields will be deleted in any later
minor versions of the format. Therefore, if this number is greater than or equal to the minor version of the format that your
software understands, then your program can expect all fields to be properly initialized.

Minor versions start at “0” for all major versions of MTF. This field allows for 255 minor versions.

Table 11. Minor Version Numbers

Name Value

MTF Minor Version for Major Version “1” 0

Refer to the MTF_TAPE DBLK structure where the MTF Major Version is defined.

Media Catalog Version {1 byte}
The Media Catalog Version field is a single byte field indicating the version of the Media Based Catalog written to this media.
A Media Based Catalog has a “type” and a “version”. This is similar in effect to the major and minor versions of the MTF
format. The version can be changed on a Data Set basis and is therefore identified in the MTF_SSET DBLK. For instance,
different versions of a Media Based Catalog may have differences in the fields of the File/Directory Detail. The type of MBC
cannot change within a Media Family and is therefore identified in the MTF_TAPE DBLK. Values for the Media Catalog
Version field are specified in the Media Based Catalog definitions.

Descriptor Blocks

Copyright 1997 Seagate Software, Inc.
Page 42 10/1/98

5.2.3 Volume Descriptor Block (MTF_VOLB)
The Volume Descriptor Block (MTF_VOLB DBLK) contains information describing a source volume in the Data Set. The
MTF_VOLB DBLK structure contains physical volume information describing the physical location of the file(s) being written
or read. It consists of a MTF_DB_HDR followed by an area with fields specific to the MTF_VOLB DBLK, a String Storage
Area used for storing the device, volume and machine names. String storage can be located anywhere following the defined
fields.

When writing the files a user sees on a network, these files may appear to be on drives E:, F: and G:, but in reality some may be
on a local drive and others may be on one or more network servers. The MTF_VOLB DBLK will reference data that describes
the physical location of the files based on the user’s logical view at the time of the data management operation. A
MTF_VOLB DBLK must precedes any Directory Descriptor Blocks (MTF_DIRB DBLKs) for a given volume.

Offset Field Name Type Size

 0 0h Common Block Header MTF_DB_HDR 52 bytes

52 34h VOLB Attributes UINT32 4 bytes

56 38h Device Name MTF_TAPE_ADDRESS 4 bytes

60 3Ch Volume Name MTF_TAPE_ADDRESS 4 bytes

64 40h Machine Name MTF_TAPE_ADDRESS 4 bytes

68 44h Media Write Date MTF_DATE_TIME 5 bytes

Structure 7. Volume Descriptor Block (MTF_VOLB)

Common Block Header {52 bytes}
The Common Block Header field is the 52 byte MTF_DB_HDR structure at the beginning of every DBLK. The DBLK Type
field within the MTF_DB_HDR will be set to ‘VOLB’. The MTF_DB_HDR contains a number of fields common to all
DBLKs as well as an offset field for locating the OS Specific Data area. This area contains directory related information for a
specific operating system.

Descriptor Blocks

Copyright 1997 Seagate Software, Inc.
9/15/00 Page 43

VOLB Attributes {4 bytes}
The VOLB Attributes field is four bytes in length organized as a 32-bit field. VOLB Attributes define characteristics of the
Volume Block represented by this MTF_VOLB DBLK. Only Bits 0 - 5 are defined at this time. Bits 6 - 23 are reserved for
future use. Bits 2 - 5 define the format of the device name. Exactly one of these bits must be set in all MTF_VOLB DBLKs.

Table 12. VOLB Attributes

Name Description Value

VOLB_NO_REDIRECT_RESTORE_BIT Objects following this DBLK can only be
restored to the device from which they were
backed up.

BIT0

VOLB_NON_VOLUME_BIT Objects following this DBLK are not associated
with a volume.

BIT1

VOLB_DEV_DRIVE_BIT Device name format is, “<drive letter>:”. BIT2

VOLB_DEV_UNC_BIT Device name format is UNC. BIT3

VOLB_DEV_OS_SPEC_BIT Device name format is OS specific (refer to
Appendix C for details on a given OS).

BIT4

VOLB_DEV_VEND_SPEC_BIT Device name format is vendor specific. BIT5

Reserved (set to zero) BIT6 - BIT23

Vendor Specific BIT24 - BIT31

Note: In cases where the data objects are not associated with a volume, the MTF_VOLB DBLK is still needed to store the
device and machine names.

Device Name {4 bytes}
The Device Name field is a four byte MTF_TAPE_ADDRESS low level structure used to specify a length and offset to a string
in the String Storage area. The string referred to by this field identifies the actual backup source name, which is used as the
default restore target (potentially the only allowable target if redirection of the data contained in the set is not permitted).

Most current applications use drive letters (C:, D:, E:, etc.) or UNC names in the device name field, which are very portable,
but others such as NetWare SMS use specialized, OS specific device names which are not portable. Refer to Appendix C for
OS specific information on device name formats. Vendors may also choose to define their own device name format to meet
special requirements of their application. However, it should be noted that a vendor specific device name for a volume which
cannot be redirected would require the user to have knowledge of the source device name when restoring such a set with a
different application. In all cases, one of the VOLB attribute bits (BIT2-BIT5) defined above should be set to define the device
name format being used.

Volume Name {4 bytes}
The Volume Name field is another four byte MTF_TAPE_ADDRESS low level structure used to specify a length and offset to
the string that identifies the name associated with the volume (i.e. SYS, MAIL, etc.). The string referred to by this field is for
display purposes only. It is used to store things such as volume labels and network share comments.

Machine Name {4 bytes}
The Machine Name field is another four byte MTF_TAPE_ADDRESS low level structure used to indicate the size and offset
of the string containing the name of the machine that this volume is on (i.e. PENTIUM_1, ENG_SERV, etc.).

Media Write Date {5 bytes}
The Media Write Date field is a five byte MTF_DATE_TIME low level structure containing the date and time that the media
was first written for this volume.

Descriptor Blocks

Copyright 1997 Seagate Software, Inc.
Page 44 10/1/98

5.2.4 Directory Descriptor Block (MTF_DIRB)
The Directory Descriptor Block (MTF_DIRB DBLK) contains the information required for restoring a directory. It consists
of a MTF_DB_HDR followed by an area with fields specific to the MTF_DIRB DBLK, an OS Specific Data Area and a String
Storage Area used for storing the file name. The area preceding the OS Specific Data and String Storage Areas contains fields
of information about the file that is valid across platforms. The OS Specific Data Area and String Storage Area can be placed
anywhere following the MTF_DIRB DBLK specific area and can be reversed in order. MTF_DIRB DBLK(s) must precedes
any File Descriptor Blocks (MTF_FILE DBLKs) for a given directory.

Offset Field Name Type Size

 0 0h Common Block Header MTF_DB_HDR 52 bytes

52 34h DIRB Attributes UINT32 4 bytes

56 38h Last Modification Date MTF_DATE_TIME 5 bytes

61 3Dh Creation Date MTF_DATE_TIME 5 bytes

66 42h Backup Date MTF_DATE_TIME 5 bytes

71 47h Last Access Date MTF_DATE_TIME 5 bytes

76 4Ch Directory ID UINT32 4 bytes

80 50h Directory Name MTF_TAPE_ADDRESS 4 bytes

Structure 8. Directory Descriptor Block (MTF_DIRB)

Common Block Header {52 bytes}
The Common Block Header field is the 52 byte MTF_DB_HDR structure at the beginning of every DBLK. The DBLK Type
field within the MTF_DB_HDR will be set to ‘DIRB’. The MTF_DB_HDR contains a number of fields common to all
DBLKs, as well as an offset field used for locating the OS Specific Data Area. This area contains directory related information
for a specific operating system.

Descriptor Blocks

Copyright 1997 Seagate Software, Inc.
9/15/00 Page 45

DIRB Attributes {4 bytes}
The DIRB Attributes field is four bytes in length organized as a 32-bit field. DIRB Attributes define characteristics of the
directory represented by this MTF_DIRB DBLK. Bits 0 - 7 are reserved for future use. Bits 8 - 11 and 16 - 18 are described in
the table below. Other bits through bit 23 are reserved for future use. These bits describe directory attributes common to most
operating systems. Some operating systems do not make use of some of these attributes and where that is the case, these bits
can simply be ignored.

Table 13. DIRB Attributes

Name Description Value

DIRB_READ_ONLY_BIT This bit is set if the directory is marked
as read only.

BIT8

DIRB_HIDDEN_BIT This bit is set if the directory is hidden
from the user.

BIT9

DIRB_SYSTEM_BIT This bit is set if the directory is a system
directory.

BIT10

DIRB_MODIFIED_BIT This bit is set if the directory has been
modified. This is also referred to as an
“archive” flag.

BIT11

DIRB_EMPTY_BIT This bit set if the directory contained no
files or subdirectories.

BIT16

DIRB_PATH_IN_STREAM_BIT This bit set if the directory path is stored
in a stream associated with this DBLK.

BIT17

DIRE_CORRUPT_BIT This bit set if the data associated with the
directory could not be read.

BIT18

Reserved (set to zero) BIT0 - BIT7
BIT12 - BIT15
BIT19 - BIT23

Vendor Specific BIT24 - BIT31

Last Modification Date {5 bytes}
The Last Modification Date field is five bytes in length and contains the date and time that the directory was last modified. A
directory is considered modified whenever a file or directory belonging to this parent directory is added or removed. This field
uses a MTF_DATE_TIME low level structure.

Creation Date {5 bytes}
The Creation Date field is another five byte field using the MTF_DATE_TIME low level structure. This field contains the
date and time when the directory was first created.

Backup Date {5 bytes}
The Backup Date field is another five byte MTF_DATE_TIME field containing the date and time that the directory was last
backed up. A directory is considered “backed up” when its entire contents are backed up.

Last Access Date {5 bytes}
The Last Access Date field also uses the five byte MTF_DATE_TIME low level structure to describe the date and time that the
directory was last accessed. A directory is considered “accessed” when its contents are modified in any way.

Note: Backup programs should not affect this field if possible.

Descriptor Blocks

Copyright 1997 Seagate Software, Inc.
Page 46 10/1/98

Directory ID {4 bytes}
The Directory ID is a four byte field containing the ID of the directory. This ID starts at one for the first directory in a Data Set
and is incremented by one for each additional directory processed. This field is used for error handling and recovery.

Directory Name {4 bytes}
The Directory Name field is four bytes in length using an MTF_TAPE_ADDRESS low level structure that specifies the
location and size of the name associated with this directory. The directory name does not include the server, volume or drive.
In addition, the “root” indicator ‘\’ must not be the first character. It is assumed that all directories start from the root. The
path separator for the native system must be replaced by a NULL character ('\0'). The Size field within the
MTF_TAPE_ADDRESS must be used to determine the length of the name string.

The “root" directory would be stored as a one character length string with a single NULL character. For consistency with the
specification of the "root", all directory names are stored with a trailing NULL character. Note that this is a trailing path
separator, not a string terminator.

The entry for a "root" directory (i.e. "C:\") is stored in the DBLK as:

'\0'

The entry for the directory "C:\apps\fred\bloggs\" is stored in the DBLK as:

apps'\0'fred'\0'bloggs'\0'

Since the size of the path may result in a DBLK size that is larger than the maximum allowed, larger directory names would
have to be stored in a separate 'PNAM' data stream. This stream must be the first data stream following the MTF_DIRB
DBLK. When restoring this directory to a different operating system, the name used to create the directory may have to be
modified to eliminate characters that are not valid for the target operating system or to adjust the size to the maximum directory
name length for the target operating system.

Descriptor Blocks

Copyright 1997 Seagate Software, Inc.
9/15/00 Page 47

5.2.5 File Descriptor Block (MTF_FILE)
The File Descriptor Block (MTF_FILE DBLK) contains the information required for restoring a file. It consists of a
MTF_DB_HDR followed by an area with fields specific to the MTF_FILE DBLK, an OS Specific Data area and a String
Storage Area used for storing the file name. The area preceding the OS Specific Data and String Storage Areas contains fields
of information about the file that is valid across platforms. The OS Specific Data and String Storage Areas can be placed
anywhere following the MTF_FILE DBLK specific area.

Offset Field Name Type Size

 0 0h Common Block Header MTF_DB_HDR 52 bytes

52 34h FILE Attributes UINT32 4 bytes

56 38h Last Modification Date MTF_DATE_TIME 5 bytes

61 3Dh Creation Date MTF_DATE_TIME 5 bytes

66 42h Backup Date MTF_DATE_TIME 5 bytes

71 47h Last Access Date MTF_DATE_TIME 5 bytes

76 4Ch Directory ID UINT32 4 bytes

80 50h File ID UINT32 4 bytes

84 54h File Name MTF_TAPE_ADDRESS 4 bytes

Structure 9. File Descriptor Block (MTF_FILE)

Common Block Header {52 bytes}
The Common Block Header field is the 52 byte MTF_DB_HDR structure at the beginning of every DBLK. The DBLK Type
field within MTF_DB_HDR will be set to ‘FILE’. The MTF_DB_HDR contains a number of fields common to all DBLKs as
well as an offset field for locating the OS Specific Data Area.

Descriptor Blocks

Copyright 1997 Seagate Software, Inc.
Page 48 10/1/98

FILE Attributes {4 bytes}
The FILE Attributes field is four bytes in length organized as a 32-bit field. This field specifies the attributes of the file
represented by this DBLK.

The table below shows the bits currently defined and those reserved for future use. These bits describe file attributes common
to most operating systems. Some operating systems do not make use of some of these attributes and where that is the case,
these bits can simply be ignored.

Table 14. FILE Attributes

Name Description Value

FILE_READ_ONLY_BIT This bit is set if the file is marked as read only. BIT8

FILE_HIDDEN_BIT This bit is set if the file is hidden from the user. BIT9

FILE_SYSTEM_BIT This bit is set if the file is a system file. BIT10

FILE_MODIFIED_BIT This bit is set if the file has been modified. This is
also referred to as an “archive” flag.

BIT11

FILE_IN_USE_BIT This bit set if the file was in use at the time it was
backed up.

BIT16

FILE_NAME_IN_STREAM_BIT This bit set if the file name is stored in a stream
associated with this DBLK.

BIT17

FILE_CORRUPT_BIT This bit set if the data associated with the file
could not be read.

BIT18

Reserved (set to zero) BIT0 – BIT7
BIT12 - BIT15
BIT19 - BIT23

Vendor Specific BIT24 - BIT31

Last Modification Date {5 bytes}
The Last Modification Date field is five bytes in length and contains the date and time that the file was last modified. This
field uses an MTF_DATE_TIME low level structure.

Creation Date {5 bytes}
The Creation Date field is another five byte field using the MTF_DATE_TIME low level structure. This field contains the
date and time that the file was first created.

Backup Date {5 bytes}
The Backup Date field is another five byte MTF_DATE_TIME field containing the date and time that the file was last backed
up. A file is considered “backed up” if it is copied to removable storage media as part of a data protection operation.

Last Access {5 bytes}
The Last Access field also uses the five byte MTF_DATE_TIME low level structure to describe the date and time that the file
was last accessed. Note: If possible, backup programs should not affect this field.

Directory ID {4 bytes}
The Directory ID is a four byte field containing the ID of the directory that the file resides in. This ID should be the same as
that which was set in the Directory ID field of the last processed MTF_DIRB DBLK. This field is used for error handling and
recovery. Refer to the MTF_DIRB DBLK description for information on how Directory ID’s are generated.

Descriptor Blocks

Copyright 1997 Seagate Software, Inc.
9/15/00 Page 49

File ID {4 bytes}
The File ID field is a four byte field identifying this file. File IDs start at one (0001h) with the first file belonging to a Data Set
and are incremented by one for each file processed. This field is used for error handling and recovery.

File Name {4 bytes}
The File Name field uses the four byte MTF_TAPE_ADDRESS low level structure to specify the location and size of the name
associated with this file. The offset within MTF_TAPE_ADDRESS points to the String Storage Area at the end of the
MTF_FILE DBLK where the file name string is physically stored. The file name can contain any characters and may be of any
length. Refer to the description of the MTF_TAPE_ADDRESS low level structure for details.

Since the size of the file name may result in a DBLK size that is larger than the maximum allowed, larger file names would
have to be stored in a separate 'FNAM' data stream. This stream must be the first data stream following the MTF_FILE
DBLK.

When restoring this file to a different operating system, the name used to create the file may have to be modified to eliminate
characters that are not valid for the target operating system, or to adjust the size to the maximum file name length supported by
the target operating system. File names are stored without path information.

Descriptor Blocks

Copyright 1997 Seagate Software, Inc.
Page 50 10/1/98

5.2.6 Corrupt Object Descriptor Block (MTF_CFIL)
It is often the case that a DBLK has already been written when it is discovered that not all of its associated data can be read due
to disk corruption, network failure, etc. When this condition occurs, the portions of the stream that could not be read are
padded to maintain the correct stream size.

A Corrupt Object Descriptor Block (MTF_CFIL DBLK) is then written to indicate that the data associated with the previous
DBLK is corrupt. The MTF_CFIL DBLK contains fields for the stream number and the byte offset in that stream where the
corruption began. It is not used for any kind of media error recovery.

If needed there is only one MTF_CFIL DBLK for a specific object being written to media. Any portion of the stream which
cannot be read due to the corruption is replaced on the media with zeroes.

Note: The exact number of bytes of object data specified in the Stream Header must still be written to media.

The reason that the object data must be padded is because most devices do not allow positioning back to the start of the stream
to rewrite the Stream Header with a new length. If the stream is variable in length, it is not necessary to complete more than
the current segment of the stream if no more valid data can be written.

Offset Field Name Type Size

 0 0h Common Block Header MTF_DB_HDR 52 bytes

52 34h CFIL Attributes UINT32 4 bytes

56 3Ch reserved - - - 8 bytes

64 40h Stream Offset UINT64 8 bytes

72 48h Corrupt Stream Number UINT16 2 bytes

Structure 10. Corrupt Object Descriptor Block (MTF_CFIL)

Common Block Header {52 bytes}
The Common Block Header field is the 52 byte MTF_DB_HDR structure at the beginning of every DBLK. The DBLK Type
field within MTF_DB_HDR will be set to ‘CFIL’. The MTF_CFIL DBLK does not use an OS Specific Data Area nor a String
Storage Area.

Descriptor Blocks

Copyright 1997 Seagate Software, Inc.
9/15/00 Page 51

CFIL Attributes {4 bytes}
The CFIL Attributes field is four bytes in length organized as a 32-bit field. This field specifies the attributes of the corrupt
data represented by this MTF_CFIL DBLK. Only Bits 16 - 18 are defined at this time. The table below describes the meaning
of the bits.

Table 15. CFIL Attributes

Name Description Value

CFIL_LENGTH_CHANGE_BIT This bit is set if the file size has changed since the file
was opened for the write operation.

BIT16

CFIL_UNREADABLE_BLK_BIT This bit is set if a hard error was encountered reading
the source media (hard disk). This usually indicates
that the media itself is bad (i.e. bad sector).

BIT17

CFIL_DEADLOCK_BIT This bit is set if the file was deadlocked. (i.e. On a
system supporting record and file locking, it was not
possible to get a region of a file unlocked within a
watchdog time interval.)

BIT18

Reserved (set to zero) BIT0 - BIT15

BIT19 - BIT23

Vendor Specific BIT24 - BIT31

Stream Offset {8 bytes}
The Stream Offset field uses the UINT64 low level structure to indicate the byte offset into the data stream where the
corruption padding begins. If the stream data is compressed, the offset of the corruption is the offset into the data when it is
decompressed.

Corrupt Stream Number {2 bytes}
The Corrupt Stream Number is a two byte field indicating which stream in the Data Stream Section of the previous MTF_FILE
DBLK contains padding for corrupt data. Keep in mind that the Data Stream Section following a MTF_FILE DBLK can
contain several data streams each with a Stream Header. The first stream in the Data Stream Section would be 1, the second
would be 2, and so on.

Descriptor Blocks

Copyright 1997 Seagate Software, Inc.
Page 52 10/1/98

5.2.7 End of Set Pad Descriptor Block (MTF_ESPB)
The End of Set Pad Descriptor Block (MTF_ESPB DBLK) is only used when the physical block size written by the device is
larger than the Format Logical Block size specified in the MTF_TAPE DBLK. When this is the case, it is possible for a Data
Set to end prior to a physical boundary. This occurs even when the data associated with the last DBLK in the Data Set has
been padded to a Format Logical Block boundary. The MTF_ESPB DBLK is used in this case to pad zeroes to the next
physical block boundary, where a filemark is written to media followed by an MTF_ESET DBLK, marking the end of the Data
Set.

Note: It is possible to achieve the same effect by extending the last SPAD in the Data Set such that it ends on a physical block
boundary if it is known that you have written the last DBLK at the time the SPAD is written.

Offset Field Name Type Size

0 0h Common Block Header MTF_DB_HDR 52 bytes

Structure 11. End of Set Pad Descriptor Block (MTF_ESPB)

Common Block Header {52 bytes}
The Common Block Header field is the 52 byte MTF_DB_HDR structure at the beginning of every DBLK. The DBLK Type
field in the MTF_DB_HDR will be set to ‘ESPB’.

Descriptor Blocks

Copyright 1997 Seagate Software, Inc.
9/15/00 Page 53

5.2.8 End of Data Set Descriptor Block (MTF_ESET)
The End of Data Set Descriptor Block (MTF_ESET DBLK) used in conjunction with a filemark, denotes the end of a Data
Set. The MTF_ESET DBLK duplicates the Data Set Number and Media Write Data fields of the MTF_SSET DBLK structure
for this Data Set. In addition, data streams may be present for the support of Media Based Catalogs.

Offset Content Type Size

 0 0h Common Block Header MTF_DB_HDR 52 bytes

52 34h ESET Attributes UINT32 4 bytes

56 38h Number Of Corrupt Files UINT32 4 bytes

60 3Ch Reserved for MBC UINT64 8 bytes

68 44h Reserved for MBC UINT64 8 bytes

76 4Ch FDD Media Sequence Number UINT16 2 bytes

78 4Eh Data Set Number UINT16 2 bytes

80 50h Media Write Date MTF_DATE_TIME 5 bytes

Structure 12. End of Data Set Descriptor Block

Common Block Header {52 bytes}
The Common Block Header field is the 52 byte MTF_DB_HDR structure at the beginning of every DBLK. The following
fields of the MTF_DB_HDR structure must be set to the defined value.

• The DBLK Type field is set to ‘ESET’.

• The Format Logical Address field is set to zero.

• The Control Block ID field is continued from the data set. All MTF_ESET DBLKs in the MBC share the same Control
Block ID.

Descriptor Blocks

Copyright 1997 Seagate Software, Inc.
Page 54 10/1/98

ESET Attributes {4 bytes}
The ESET Attributes field is four bytes in length organized as a 32-bit field. Only Bits 0 - 5 are defined at this time. Bits 1 - 5
are used to specify what type of backup operation was used to create the Data Set immediately preceding the MTF_ESET
DBLK on the media. Possible operation types include, copy, normal backup, differential backup, incremental backup and daily
backup. Only one of these five bits should be set for a given Data Set. In the descriptions that follow, the “modified” flag
(describing whether a file has been created or modified) is mentioned. Another name for this is the “archive” flag. Bits 6 - 23
of this field are reserved for future use.

Table 16. ESET Attributes

Name Description Value

ESET Transfer Bit This bit is set if the data management operation is a
“transfer”. It indicates that the files in this Data Set were
removed from the source media after the operation was
completed.

BIT0

ESET Copy Bit This bit is set if the operation is a “copy”. The copy method
copies all selected files from the primary storage to the
media. The file’s “modified” flag IS NOT reset afterwards.

BIT1

ESET Normal Bit This bit is set if the backup type is “normal”. The normal
backup method backs up all selected files. The file’s
“modified” flag IS reset afterwards.

BIT2

ESET Differential Bit This bit is set if the backup type is “differential”. The
differential backup method only backs up selected files
having their “modified” flag set. The file’s “modified” flag IS
NOT reset afterwards.

BIT3

ESET Incremental Bit This bit is set if the backup type is “incremental”. The
incremental backup method only backs up selected files
having their “modified” flag set. The file’s “modified” flag IS
reset afterwards.

BIT4

ESET Daily Bit This bit is set if the backup type is “daily”. The daily backup
method only backs up selected files created or modified with
today’s date. The file’s “modified” flag IS NOT reset
afterwards.

BIT5

Reserved (set to zero) BIT6 - BIT23

Vendor Specific BIT24 - BIT31

File/Directory Detail PBA {8 bytes}
The File/Directory Detail PBA field uses the eight byte UINT64 structure to specify the Physical Block Address of the MBC
File/Directory Detail stream. This FDD stream is associated with the Data Set marked at the end by this MTF_ESET DBLK.

FDD Media Sequence Number {2 bytes}
The FDD Media Sequence Number field is two bytes in length and indicates the Media Sequence Number associated with the
File/Directory Detail for this Data Set.

Data Set Number {2 bytes}
The Data Set Number field is a two byte field containing the ID number corresponding to this Data Set. This should be the
same Data Set Number found in the MTF_SSET DBLK. Data Set Numbers start at “one” (0x01) with the first Data Set on the
media, and are incremented by one for each new Data Set appended to the media. Refer to the MTF_SSET DBLK for more
information.

Descriptor Blocks

Copyright 1997 Seagate Software, Inc.
9/15/00 Page 55

Media Write Date {5 bytes}
The Media Write Date field uses the five byte MTF_DATE_TIME low level structure to indicate the exact date and time that
this Data Set was created.

Descriptor Blocks

Copyright 1997 Seagate Software, Inc.
Page 56 10/1/98

5.2.9 End of Tape Marker Descriptor Block (MTF_EOTM)
The End Of Tape Marker Descriptor Block (MTF_EOTM DBLK) is used to indicate that the End Of Media (EOM) was
reached while writing the media and that the Media Family continues onto another media. When the EOM is reached, the
write operation may be in a wide range of conditions. Each condition must be handled in a unique way. Refer to End of Media
Processing.

Offset Content Type Size

 0 0h Common Block Header MTF_DB_HDR 52 bytes

52 34h Last ESET PBA UINT64 8 bytes

Structure 13. End of Tape Marker Descriptor Block

Common Block Header {52 bytes}
The Common Block Header field is the 52 byte MTF_DB_HDR structure at the beginning of every DBLK. The following
fields of the MTF_DB_HDR structure must be set to the defined value.

• The DBLK Type field is set to ‘EOTM’.

• The Format Logical Address field is set to zero.

• The Control Block ID field is set to zero.

Last ESET PBA {8 bytes}
The Last ESET PBA field uses the eight byte UINT64 structure to specify the Physical Block Address of the last full
MTF_ESET written to media.

Descriptor Blocks

Copyright 1997 Seagate Software, Inc.
9/15/00 Page 57

5.2.10 Soft Filemark Descriptor Block (MTF_SFMB)
The Soft Filemark Descriptor Block (MTF_SFMB DBLK) is used to emulate filemarks when hardware filemark support is
not available. Setting the TAPE_SOFT_FILEMARK_BIT bit in the TAPE Attributes field of the MTF_TAPE DBLK enables
soft Filemarks. The Soft Filemark Block Size field of the MTF_TAPE DBLK determines the size of a MTF_SFMB DBLK.
The size of the MTF_SFMB DBLK must be defined so that it starts and ends on a physical block boundary. The MTF_SFMB
DBLK cannot have any associated data streams. The MTF_SFMB DBLK contains an array of physical block addresses of
previous filemarks. If an entry in the array is not used, it is set to a value of zero.

Offset Content Type Size

 0 0h Common Block Header MTF_DB_HDR 52 bytes

52 34h Number of Filemark Entries UINT32 4 bytes

56 38h Filemark Entries Used UINT32 4 bytes

60 3Ch PBA of Previous Filemarks Array UINT32 sizeof (MTF_SFMB) - 60

Structure 14. Soft Filemark Descriptor Block

Common Block Header {52 bytes}
The Common Block Header field is the 52 byte MTF_DB_HDR structure at the beginning of every DBLK. The following
fields of the MTF_DB_HDR structure must be set to the defined value.

• The DBLK Type field is set to ‘SFMB’.

• The Format Logical Address field is set to the number of Physical Blocks from the beginning of the media.

• The Control Block ID field is used for error recovery. The first MTF_SFMB DBLK in a Media Family has a Control
Block ID value of one. All subsequent MTF_SFMB DBLKs within the Data Set will have a Control Block ID one
greater than the previous MTF_SFMB DBLK’s Control Block ID.

Number of Filemark Entries {4 bytes}
The Number of Filemark Entries field is four bytes in size and contains the total number of filemarks in the PBA of Previous
Filemark Array.

Filemark Entries Used {4 bytes}
The Filemark Entries Used field is four bytes in size and contains number of valid filemarks in the PBA of Previous Filemark
Array.

PBA of Previous Filemarks Array {4 byte elements}
The PBA of Previous Filemarks Array field is an array of filemark elements. Each filemark element is a 4 byte PBA of a
previous filemark. The PBA of Previous Filemarks Array is cumulative. Entries are always stored in descending order. When
the number of previous filemarks exceeds the number of entries in the array, the array is filled with those entries closest to End
of Data (EOD). If a entry in the array is not used, it is set to a value of zero.

Descriptor Blocks

Copyright 1997 Seagate Software, Inc.
Page 58 10/1/98

SFMB
COMMON BLOCK HEADER

fixed
length
60 bytes

size of
physical
block -
60 bytes

Number of Filemark Entries

One
Physical
Block
Size

Filemark Entries Used (4)

PBA1 (d)

PBA2 (c)

PBA4 (a)

PBA3 (b)

PBAn d (zero)

PBAn-1 (zero)

PBA5 (zero)

PBA6 (zero)

PBA7 (zero)

PBA8 (zero)

TAPE
DBLK

Data Set 1

PBA0

Data Set 1
MBC Free spaceSFMB

DBLK
SFMB
DBLK

SFMB
DBLK

Data Set 2 Data Set 2
MBC

SFMB
DBLK

SFMB
DBLK

PBAa PBAb PBAc PBAd PBAe

PBA9 (zero)

Figure 17. Soft Filemark Block Layout

Programming Note: The MTF_SFMB DBLK contains a cumulative list of filemark PBAs. To build a list of all filemarks seek
to EOD and backup one physical block. Read the MTF_SFMB DBLK. If the Number of Filemark
Entries field is equal to the Filemark Entries Used field, then previous MTF_SFMB DBLKs must be read
to build a complete list of all filemarks.

Data Streams

Copyright 1997 Seagate Software, Inc.
9/15/00 Page 59

6. Data Streams
This section provides detailed information about data streams. Data streams provided a mechanism for encapsulating different
types of information using Stream Headers. This encapsulated information is then associated with a DBLK. One or more data
streams can be associated with a DBLK. By breaking up different type of information into separate data streams, software can
restore known stream types while ignoring unknown types.

FILE
DBLK

S
H

FILE
DBLKStream Data

4 byte Stream
Alignment

4 byte Stream
Alignment

NTEA
Stream Header

S
H Stream Data S

H SPAD Data

4 byte Stream
Alignment

STAN
Stream Header

SPAD
Stream Header

Figure 18. Data Streams

6.1 Stream Header (MTF_STREAM_HDR)
Each data stream is preceded by a Stream Header structure (MTF_STREAM_HDR). The first Stream Header associated with
a given DBLK is located at an offset from the beginning of the DBLK. This offset is stored in the Offset To Next Event field of
the MTF_DB_HDR portion of the DBLK. All Stream Headers begin on 4 byte boundaries.

If a Stream Header is split at EOM, it is re-written in full on the continuation media at an offset to data stored in the
continuation DBLK. If EOM is crossed in the middle of the stream (by far the most common of all EOM cases), a copy of the
stream's header, with an adjusted size and the continuation bit set, is written at the offset to data in the continuation DBLK.
The Stream Header is followed by the remainder of the data.

Offset Content Type Size

 0 0h Stream ID UINT32 4 bytes

 4 4h Stream File System Attributes UINT16 2 bytes

 6 6h Stream Media Format Attributes UINT16 2 bytes

 8 8h Stream Length UINT64 8 bytes

16 10h Data Encryption Algorithm UINT16 2 bytes

18 12h Data Compression Algorithm UINT16 2 bytes

20 14h Checksum UINT16 2 bytes

Structure 15. Stream Header (MTF_STREAM_HDR)

Stream ID {4 bytes}
The Stream ID is a four byte field that identifies the type of data stream. A four byte ASCII value as shown in the table below
is used to specify the Stream ID. Additional four byte ASCII values can be added.

Data Streams

Copyright 1997 Seagate Software, Inc.
Page 60 10/1/98

Stream File System Attributes {2 bytes}
The Stream File System Attributes field is two bytes in length and organized as sixteen bits. Only Bits 0 - 2 are defined at this
time, the rest are reserved for future use. These attribute bits provide useful information about the quality of the data contained
in the stream. They are defined as follows.

Table 17. Stream File System Attributes

Name Description Value

STREAM_MODIFIED_BY_READ Data in stream has changed after
reading, do not attempt to do a verify
operation.

BIT0

STREAM_CONTAINS_SECURITY Security information is contained in this
stream.

BIT1

STREAM_IS_NON_PORTABLE This data can only be restored to the
same OS that it was saved from.

BIT2

STREAM_IS_SPARSE The stream data is sparse (see below) BIT3

Reserved for future use. BIT4 - BIT15

STREAM_IS_SPARSE
The STREAM_IS_SPARSE bit signifies that sparse data follows and is encapsulated by ‘SPAR’ Data Streams . The
initial steam header specifies the type of sparse data in the Stream ID field (e.g., STANDARD_DATA_STREAM), has
the STREAM_IS_SPARSE bit set in the Stream File System Attributes, and has a Stream Length of zero.
Immediately following the initial stream header is one or more ‘SPAR’ Data Streams, which encapsulates the sparse
data.

Stream Media Format Attributes {2 bytes}
The Stream Media Format Attributes field is two bytes in length and provides information about the physical characteristics of
the stream as they pertain to the format. They are defined as follows.

Table 18. Stream Media Format Attributes

Name Description Value

STREAM_CONTINUE This is a continuation stream. BIT0

STREAM_VARIABLE Data size for this stream is variable. BIT1

STREAM_VAR_END Last piece of the variable length data. BIT2

STREAM_ENCRYPTED This stream is encrypted. BIT3

STREAM_COMPRESSED This stream is compressed. BIT4

STREAM_CHECKSUMED This stream is followed by a
checksum stream.

BIT5

STREAM_EMBEDDED_LENGTH The stream length is embedded in the
data

BIT6

Reserved for future use. BIT7 -
BIT15

Data Streams

Copyright 1997 Seagate Software, Inc.
9/15/00 Page 61

STREAM_EMBEDDED_LENGTH
The STREAM_EMBEDDED_LENGTH bit is obsolete and provided for backwards compatibility. This bit was used
to embed the stream length when compression was active and the stream data was broken into variable length streams.
This functionality is now provided in the Compression Frame Header.

Offset Content Type Size

 0 0h Stream Length UINT64 4 bytes

 4 4h Checksum UINT16 2 bytes

Structure 16. STREAM_EMBEDDED_LENGTH

Stream Length {8 bytes}
The Stream Length field uses the 8 bytes UINT64 low level structure to specify the length of the current stream in bytes. The
Stream Length does not include the size of the MTF_STREAM_HDR structure or any padding data used for alignment.

Data Encryption Algorithm
The Data Encryption Algorithm is a two byte field containing the registered ID of the encryption algorithm being used to
encrypt data. This field is only important if the STREAM_ENCRYPTED bit (BIT3) of the Stream Media Format Attributes
field is set.

Data Compression Algorithm
The Data Compression Algorithm field is a two byte field containing the registered ID of the compression algorithm being
used to compress data. The STREAM_COMPRESSED bit (BIT4) of the Stream Media Format Attributes field must be set.

Checksum
The Checksum field contains a word-wise XOR sum of all fields from Stream ID to the Checksum field. The two byte
Checksum field is not included in the checksum. This field is used to verify that a valid Stream Descriptor is being processed
during read operations.

It should be noted that this checksum is not used for any file data verification. It is only used to validate the information
contained in the Stream Header (MTF_STREAM_HDR).

6.2 Stream Data
The stream data starts immediately after the Checksum field in the Stream Header. This section describes the format of Stream
Data for the different Stream ID types.

6.2.1 Platform Independent Stream Data
This section describes Data Streams that are Operating System independent.

Table 19. Platform Independent Stream Data Types

Name Description Value

STANDARD_DATA_STREAM Standard, non-specific file data stream. 'STAN'

PATH_NAME_STREAM Directory name in stream. 'PNAM'

FILE_NAME_STREAM Supports extended length file names 'FNAM'

CHECKSUM_STREAM Checksum of previous stream data. 'CSUM'

Data Streams

Copyright 1997 Seagate Software, Inc.
Page 62 10/1/98

CORRUPT_STREAM Previous stream was corrupt ‘CRPT’

PAD_STREAM Pad to next DBLK stream. 'SPAD'

SPARSE_STREAM Sparse data. ‘SPAR’

MBC_LMO_SET_MAP_STREAM See Media Based Catalogs - Type 1 'TSMP'

MBC_LMO_FDD_STREAM See Media Based Catalogs - Type 1 'TFDD'

MBC_SLO_SET_MAP_STREAM See Media Based Catalogs - Type 2 'MAP2'

MBC_SLO_FDD_STREAM See Media Based Catalogs - Type 2 'FDD2'

6.2.1.1 Standard Data Stream (STANDARD_DATA_STREAM)
The Stream ID field of the Stream Header is set to ‘STAN’ to indicate Standard Data Stream. The Standard Data Stream
contains normal file data.

Window NT Note: When the Win32 BackupRead API is used, each data stream associated with the object being read will
be preceded by a Win32 stream header. This Win32 stream header should be used to fill out the
information in the MTF Stream Header, but should not be written to the media as part of the data
stream.

For standard data, the dwStreamId field of the WIN32_STREAM_ID field is set to a value of
BACKUP_DATA.

6.2.1.2 Directory Name In Stream (PATH_NAME_STREAM)
The Stream ID field of the Stream Header is set to ‘PNAM’ to indicate Directory Name In Stream. MTF limits DBLK size
to the Format Logical Block Size field of the MTF_TAPE DBLK. If the directory name cannot be added to the
MTF_DIRB DBLK because the new size would exceed the Format Logical Block Size limit, the directory name is placed
in the first data stream associated with the MTF_DIRB DBLK. The PATH_IN_STREAM bit must be set in the DIRB
Attributes field of the MTF_DIRB DBLK.

Note: When spanning, the Directory Name In Stream must be associated with the continuation MTF_DIRB DBLK.

6.2.1.3 File Name In Stream (FILE_NAME_STREAM)
The Stream ID field of the Stream Header is set to ‘FNAM’ to indicate File Name In Stream. MTF limits DBLK size to
the Format Logical Block Size field of the MTF_TAPE DBLK. If the file name cannot be added to the MTF_FILE DBLK
because the new size would exceed the Format Logical Block Size limit, the file name is placed in the first data stream
associated with the MTF_FILE DBLK. The FILE_IN_STREAM bit must be set in the FILE Attributes field of the
MTF_FILE DBLK.

Note: When spanning, the File Name In Stream must be associated with the continuation MTF_FILE DBLK.

6.2.1.4 Checksum Stream (CHECKSUM_STREAM)
The Stream ID field of the Stream Header is set to ‘CSUM’ to indicate Checksum Stream. The checksum stream is used to
verify Stream Data consistency. Each data stream associated with a DBLK may have an optional checksum stream. If a
data stream is going to have a checksum generated for data consistency, the Stream Media Format Attributes field of the
Stream Header must have the STREAM_CHECKUMED bit set and the data stream that immediately follows must be the
Checksum Stream (CSUM).

Data Streams

Copyright 1997 Seagate Software, Inc.
9/15/00 Page 63

FILE
DBLK

S
H Stream Data

4 byte Stream
Alignment

4 byte Stream
Alignment

NTEA
Stream Header
STREAM_CHECKSUMED

S
H

Checksum
for NTEA
Stream Data

S
H Stream Data

4 byte Stream
Alignment

CSUM
Stream Header

STAN
Stream Header
STREAM_CHECKSUMED

Figure 19. Checksum Stream

The checksum is a 32-bit (4 bytes) XOR sum of the linear Stream Data. Independent of how the Stream Data is segmented,
the software algorithm used to generate the 32-bit checksum must guarantee consistency. For example, if the Stream Data
is segmented into chunks of 1, 2, 3, or 4 bytes, the algorithm will generate the same 32-bit checksum.

6.2.1.5 Corrupt Stream (CORRUPT_STREAM)
The Stream ID field of the Stream Header is set to ‘CRPT’ to indicate the previous data stream is a Corrupt Stream. The
Corrupt Stream is used in conjunction with the MTF_CFIL DBLK to identify which streams are corrupt. The MTF_CFIL
DBLK has a limitation and can only identify a single data stream as corrupt. The Corrupt Stream has a one to one
correspondence with corrupt data streams. The corrupt stream does not have any Stream Data.

6.2.1.6 Pad Stream (PAD_STREAM)
The Stream ID field of the Stream Header is set to ‘SPAD’ to indicate a Pad Stream. The Pad Stream is always the last
data stream associated with a DBLK. The Pad Stream is used to indicate no additional data stream for the associated
DBLK and brings alignment to a Format Logical Block where the next DBLK or filemark is placed. If the Pad Stream
precedes a filemark, the Pad Stream must also bring alignment to a Physical Block. The Stream Data of the Pad Stream is
set to NULL (binary zero) to maintain a C2 security level.

Note: Early drafts of the MTF Version 1.0 specification did not require the Pad Stream. In this case the Offset To Next
Event field of the MTF_DB_HDR could point to a DBLK and not a Stream Header. In this case you should read
the size of a Stream Header and verify the checksum. If the checksum matches make the assumption it is a Stream
Header. If the checksum does not match continue reading up to the size of a MTF_DB_HDR and check the
checksum. If the checksum matches make the assumption it is a DBLK. If the checksum does not match use error
recovery to try and find the next DBLK.

6.2.1.7 Sparse Stream (SPARSE_STREAM)
The Stream ID field of the Stream Header is set to ‘SPAR’ to indicate a Sparse Stream. A Sparse Frame Header
immediately follows the stream header and is included in the Stream Length. The Sparse Frame Header specifies the offset
within the sparse file. The length of the sparse data is the Stream Length minus the size of the Sparse Frame Header.

Offset Content Type Size

 0 0h Offset within sparse file. UINT64 8 bytes

Structure 17. Sparse Frame Header

Data Streams

Copyright 1997 Seagate Software, Inc.
Page 64 10/1/98

S
H

Stream Data

4 byte Stream
Alignments

SPAR
Stream Header

S
H

Stream Data

4 byte Stream
Alignment

SPAR
Stream Header

FILE
DBLK Header Sparse Data Header Sparse Data

S
H

STAN
Stream Header

STREAM_IS_SPARSE

Figure 20. Windows 95 Registry Stream

6.2.2 Windows NT Stream Data
This section describes Data Streams that are specific to the Windows NT Operating System. Most NT streams are sourced
using the Win32 BackupRead API. Preceding the data is a Win32 stream header (WIN32_STREAM_ID) that specifies the
type of data that follows. The Win32 stream header is used to fill out the information in the MTF Stream Header, but should
not be written as part of the Stream Data.

Table 20. Windows NT Stream Data Types

Name Description Value

STANDARD_DATA_STREAM See definition above for Windows NT issues. ‘STAN’

SPARSE_STREAM Windows NT sparse files
BACKUP_SPARSE_DATA use the platform
independent SPARSE_STREAM.

‘SPAR’

NTFS_ALT_STREAM NT alternate data stream. 'ADAT'

NTFS_EA_STREAM NT extended attribute data stream. 'NTEA'

NT_SECURITY_STREAM NT specific security data stream. 'NACL'

NT_ENCRYPTED_STREAM NT encrypted data stream. ‘NTED’

NT_QUOTA_STREAM NT quota data stream. ‘NTQU’

NT_PROPERTY_STREAM NT property data stream. ‘NTPR’

NT_REPARSE_STREAM NT reparse data stream. ‘NTRP’

NT_OBJECT_ID_STREAM NT object ID data stream. ‘NTOI’

6.2.2.1 Windows NT Alternate Data (NTFS_ALT_STREAM)
The Stream ID field of the Stream Header is set to ‘ADAT’ to indicate Windows NT Alternate Data. For Windows NT
Alternate Data, the dwStreamId field of the WIN32_STREAM_ID field is set to a value of
BACKUP_ALTERNATE_DATA.

Windows NT Alternate Data streams require some special processing in MTF. The MTF Stream Header for these streams
is written as usual, with the stream type being ‘ADAT’. However, a 4 byte stream name size field and the stream name
should precede the actual data in the MTF data stream, with the 4 bytes for the size field and the size it contains added to
the total size of the data stored in the MTF Stream Header. The Win32 stream header for these streams contains a stream
name size field, and is followed by the stream name. The string type for this name is always UNICODE, and the size is the
size in bytes, not including a null terminator.

Data Streams

Copyright 1997 Seagate Software, Inc.
9/15/00 Page 65

ADAT
Stream Header

Name
Size Name Stream Data

Stream Length = sizeof (Name Size)
 + value in Name Size
 + size of Stream Data

6.2.2.2 Windows NT Extended Attribute Data (NTFS_EA_STREAM)
The Stream ID field of the Stream Header is set to ‘NTEA’ to indicate Windows NT Extended Attribute Data. For
Windows NT Extended Attribute Data, the dwStreamId field of the WIN32_STREAM_ID field is set to a value of
BACKUP_EA_DATA.

6.2.2.3 Windows NT Security Data (NT_SECURITY_STREAM)
The Stream ID field of the Stream Header is set to ‘NACL’ to indicate Windows NT Security Data. For Windows NT
Security Data, the dwStreamId field of the WIN32_STREAM_ID field is set to a value of BACKUP_SECURITY_DATA.

Note: The Stream File System Attributes field of the Stream Header must have the STREAM_CONTAINS_SECURITY
bit set.

6.2.2.4 Windows NT Encrypted Data (NT_ENCRYPTED_STREAM)
The Stream ID field of the Stream Header is set to ‘NTED’ to indicate Windows NT Encrypted Data. Data obtained
through Windows NT Encryption APIs and not BackupRead.

6.2.2.5 Windows NT Quota Data (NT_QUOTA_STREAM)
The Stream ID field of the Stream Header is set to ‘NTQU’ to indicate Windows NT Quota Data. Data obtained through
Windows NT Quota API and not BackupRead.

6.2.2.6 Windows NT Property Data (NT_PROPERTY_STREAM)
The Stream ID field of the Stream Header is set to ‘NTPR’ to indicate Windows NT Property Data. For Windows NT
Property Data, the dwStreamId field of the WIN32_STREAM_ID field is set to a value of BACKUP_PROPERTY_DATA.

6.2.2.7 Windows NT Reparse Data (NT_REPARSE_STREAM)
The Stream ID field of the Stream Header is set to ‘NTRP’ to indicate Windows NT Reparse Data. For Windows NT
Reparse Data, the dwStreamId field of the WIN32_STREAM_ID field is set to a value of BACKUP_REPARSE_DATA.

6.2.2.8 Windows NT Object ID Data (NT_OBJECT_ID_STREAM)
The Stream ID field of the Stream Header is set to ‘NTOI’ to indicate Windows NT Object ID Data. For Windows NT
Object ID Data, the dwStreamId field of the WIN32_STREAM_ID field is set to a value of BACKUP_OBJECT_ID.

6.2.3 Windows 95 Stream Data
This section describes Data Streams that are specific to the Windows 95 Operating System.

6.2.3.1 Windows 95 Registry Stream (WIN95_REGISTRY_STREAM)
The Stream ID field of the Stream Header is set to ‘GERC’ to indicate a Windows 95 Registry Stream. The Windows 95
Registry Streams are associated with the root directory (MTF_DIRB DBLK) of the volume in which the Windows 95
Operating System resides. The HKEY_LOCAL_MACHINE and HKEY_USERS are stored in separate Windows 95
Registry Streams. The Stream Length field of the Stream Header is set to the size of the GERC_HEADER plus the length
of the HKEY_XXX data.

Data Streams

Copyright 1997 Seagate Software, Inc.
Page 66 10/1/98

VOLB
DBLK

S
H

Stream Data

4 byte Stream
Alignment

GERC
Stream Header

S
H

Stream Data

4 byte Stream
Alignment

GERC
Stream Header

DIRB
DBLK Header HKEY_LOCAL_MACHINE Data Header HKEY_USER Data

Assume SPAD
Data Stream

Figure 21. Windows 95 Registry Stream

The GERC_HEADER is a 260 byte header that contains the key root handle and key name.

Offset Content Type Size

 0 0h Key ID UINT32 4 bytes

 4 4h Key Name UINT8 [256] 256 bytes

Structure 18. Windows 95 Registry Stream

Key ID {4 bytes}
The Key ID is a four byte field that identifies the type of registry data in the Stream Data. The Key ID field must be set to
HKEY_LOCAL_MACHINE or HKEY_USERS.

Key Name {4 bytes}
The Key Name is a null-terminated string containing the name of the key in the Stream Data. If the Key Name string is zero
length then they key being backed up is the root key itself.

6.2.4 NetWare Stream Data
This section describes Data Streams that are specific to the Novell NetWare Operating System.

Table 21. NetWare Stream Data Types

Name Description Value

NETWARE_386_TRUSTEE_STREAM NetWare trustee information 'N386'

NETWARE_BINDERY_STREAM NetWare bindery ‘NBND’

NETWARE_SMS_DATA_STREAM NetWare SMS data format ‘SMSD’

6.2.4.1 NetWare Trustee Information (NETWARE_386_TRUSTEE_STREAM)
The Stream ID field of the Stream Header is set to ‘N386’ to indicate NetWare 286 or NetWare 386 Trustee Information.
The stream is a concatenation of the trustees for the file or directory in the format of a repeating sequence of a DWORD
representing the trustees ID and a WORD representing the rights mask, whether maximum (NetWare 2.x) or inherited
(NetWare 3.x).

The TRUSTEE_INFO is a 6 byte structure that contains the trustee ID and trustee rights mask.

Data Streams

Copyright 1997 Seagate Software, Inc.
9/15/00 Page 67

Offset Content Type Size

 0 0h Trustee ID UINT32 4 bytes

14 Eh Trustee Rights Mask UINT16 2 bytes

Structure 19. NetWare Trustee Info

6.2.4.2 NetWare Bindery (NETWARE_BINDERY_STREAM)
The Stream ID field of the Stream Header is set to ‘NBND’ to indicate NetWare Bindery. The NetWare Bindery stream is
used for both NetWare 286 and NetWare 386. The NetWare Bindery Stream is associated with the root directory
(MTF_DIRB DBLK) of the SYS volume. The Stream Data consists of one ore more BINDERY_HEADER structures and
corresponding bindery source file data.

VOLB
DBLK

S
H

Stream Data

4 byte Stream
Alignment

NBND
Stream Header

DIRB
DBLK Header Bindery Source File Data

Stream DataS
H

4 byte Stream
Alignment

SPAD
Stream Header

Header Bindery Source File Data

Figure 22. NetWare Bindery Stream

The BINDRY_HEADER is a 18 byte header that contains the bindery source file name and bindery source file size.

Offset Content Type Size

 0 0h Bindery Source File Name UINT8 [14] 14 bytes

14 Eh Bindery Source File Size UINT32 4 bytes

Structure 20. NetWare Bindery Stream

Bindery Source File Name {14 bytes}
The Bindery Source File Name is a null-terminated string of the bindery source file (e.g., NET$BND.SYS).

Bindery Source File Size {4 bytes}
The Bindery Source File Size is a four byte field containing the size of the bindery source file.

6.2.4.3 NetWare SMS Data Format (NETWARE_SMS_DATA_STREAM)
The Stream ID field of the Stream Header is set to ‘SMSD’ to indicate NetWare SMS Data Format. The SMS data is stored
without modification.

6.2.5 OS/2 Stream Data
This section describes Data Streams that are specific to the OS/2 Operating System.

Table 22. OS/2 Stream Data Types

Name Description Value

Data Streams

Copyright 1997 Seagate Software, Inc.
Page 68 10/1/98

HPFS_SECURITY_STREAM HPFS security data stream. 'OACL'

HPFS_EA_STREAM HPFS extended attribute data stream. 'O2EA'

(to be written)

6.2.6 Macintosh Stream Data
This section describes Data Streams that are specific to the Macintosh Operating System.

Table 23. Macintosh Stream Data Types

Name Description Value

MAC_RESOURCE_STREAM Macintosh resource fork stream. 'MRSC'

MAC_PRIVILEGE_STREAM Macintosh privilege stream. 'MPRV'

MAC_INFO_STREAM Macintosh Get Info stream. 'MINF'

6.2.6.1 Macintosh Resource Stream (MAC_RESOURCE_STREAM)
The Stream ID field of the Stream Header is set to ‘MRSC’ to indicate Macintosh Resource Stream. The Macintosh
Resource Stream contains the item’s resource fork.

6.2.6.2 Macintosh Privilege Stream (MAC_PRIVILEGE_STREAM)
The Stream ID field of the Stream Header is set to ‘MPRV’ to indicate Macintosh Privilege Stream. The Macintosh
Privilege Stream contains the privilege information for directories (foreign privilege systems, contain files as well). The
first entry, "Foreign Privilege Model", contains 0 (Indicating Native Privileges) or else a number that identifies the foreign
file system privilege model (only A/UX has been defined so far).

Native Privileges use the following structure:

Offset Content Type Size Apple OS Equivalent

0 Foreign Privilege Model (zero) UINT8 [2] 2 bytes GetVolParmsInfoBuffer .
vMForeignPrivID

2 Access Rights UINT8 [4] 4 bytes AccessParam . ioACAccess

6 UserIDNumber MAC_UINT32 4 bytes AccessParam . ioACOwnerID

10 User Name MAC_STR31 32 bytes PBHMapID of user id
number, yielding ObjParam .
ioObjNamePtr

42 Group ID Number MAC_UINT32 4 bytes AccessParam . ioACGroupID

46 Group Name MAC_STR31 32 bytes PBHMapID of group id
number, yielding ObjParam .
ioObjNamePtr

Structure 21. Macintosh Native Privilege

Foreign Privileges use the following structure:

Data Streams

Copyright 1997 Seagate Software, Inc.
9/15/00 Page 69

Offset Content Type Size Apple OS Equivalent

0 Foreign Privilege Model (non-
zero)

UINT8 [2] 2 bytes GetVolParmsInfoBuffer .
vMForeignPrivID

2 Foreign Privilege Info1 UINT8 [4] 4 bytes ForeignPrivParam .
ioForeignPrivInfo1

6 Foreign Privilege Info2 UINT8 [4] 4 bytes ForeignPrivParam .
ioForeignPrivInfo2

10 Foreign Privilege Info3 UINT8 [4] 4 bytes ForeignPrivParam .
ioForeignPrivInfo3

14 Foreign Privilege Info4 UINT8 [4] 4 bytes ForeignPrivParam .
ioForeignPrivInfo4

18 Foreign Privilege Variable-
Length Info

UINT8 [n] n bytes ForeignPrivParam .
ioForeignPrivBuffer- length is
ForeignPrivParam .
ioForeignPrivReqCount

Structure 22. Macintosh Foreign Privilege

It is allowed (but not required) for a backup application to include both the Native and Foreign versions of this information
for a given directory by including two MAC_PRIVILEGE_STREAMS after its MTF_DIR DBLK. Apple does not
currently support Native permissions for files.

6.2.6.3 Macintosh Info Stream (MAC_INFO_STREAM)
The Stream ID field of the Stream Header is set to ‘MINF’ to indicate Macintosh Info Stream. The Macintosh Info Stream
contains the Get Info comments entered by a user for a given directory or file. (Comments entered for a Volume are
actually implemented as comments for the volume's root directory.) The stream need not be included if there is no user
comment for an item.

Offset Content Type Size Apple OS Equivalent

0 Comment Length MAC_UINT8 1 byte DTPBRec.ioDTBuffer [0]

1 Comment Text UINT8 [n] n bytes & DTPBRec.ioDTBuffer [1]

Structure 23. Macintosh Info

6.3 Variable Length Streams
Variable Length Streams are used to segment stream data. Each segment of the stream data is encapsulated by a Stream
Header. Every Stream Header used to make up a variable length stream has the STREAM_VARIABLE bit set in the Stream
Media Format Attributes field. The last Stream Header has the STREAM_VAR_END bit set in the Stream Media Format
Attributes field.

Data Streams

Copyright 1997 Seagate Software, Inc.
Page 70 10/1/98

S
H

FILE
DBLK

Stream Data
segment a

4 byte Stream
Alignment

4 byte Stream
Alignment

STAN
Stream Lenght = a
STREAM_VARIABLE

S
H

Stream Data
segment b

S
H

Stream Data
segment c

4 byte Stream
Alignment

STAN
Stream Lenght = b
STREAM_VARIABLE

STAN
Stream Lenght = c
STREAM_VARIABLE
STREAM_VAR_END

Figure 23. Variable Length Streams

6.4 Data Compression
MTF supports the compression of stream data with the exception of the Pad, Set Map, and File/Directory detail streams. When
compression is enabled, all DBLKs within a backup set have the MTF_COMPRESSION bit set in the Block Attributes field of
the MTF_DB_HDR and the Software Compression Algorithm field of the MTF_SSET DBLK is set to the appropriate software
compression algorithm ID. Only one software compression algorithm can be used per backup set.

Note: The MTF_COMPRESSION bit and Software Compression Algorithm field is set even if no streams are compressed.

To compress stream data, the Stream Header must have the STREAM_COMPRESSED bit of the Stream Media Format field
set and the Data Compression Algorithm field set to the same ID stored in the Software Compression Algorithm field of the
MTF_DB_HDR. Once a Stream Header is set to indicate compression is active, all stream data must be encapsulated by
Compression Frame Headers. Due to the nature of software compression, the streams will most likely be variable length.

When a stream is to be written with both data compression and data encryption, the data would be compressed first and then
encrypted. Therefore, when reading a stream that is compressed and encrypted, the data is decrypted first and then
decompressed.

6.4.1 Compression Frame Header (MTF_CMP_HDR)
The Compression Frame Header is used to encapsulate compressed stream data and provides all information necessary for
decompression. It must also provide the total number of uncompressed data bytes from the current compression frame header
through the end of the stream if available.

Offset Field Name Type Size

 0 00h Compression Header ID UINT16 2 bytes

 2 02h Stream Media Format Attributes UINT16 2 bytes

 4 04h Remaining Stream Size UINT64 8 bytes

12 0Ch Uncompressed Size UINT32 4 bytes

16 10h Compressed Size UINT32 4 bytes

20 15h Sequence Number UINT8 1 byte

21 16h reserved --- 1 byte

22 17h Checksum UINT16 2 bytes

Structure 24. Compression Frame Header (MTF_CMP_HDR)

Data Streams

Copyright 1997 Seagate Software, Inc.
9/15/00 Page 71

Compression Header ID {2 bytes}
The Compression Header ID field identifies this as the start of a compression frame header. The compression header ID field
contains a two character ASCII signature ‘FH’ (0x4846).

Stream Media Format Attributes
The Stream Media Format Attributes field contains the original stream media format attributes from the Stream Header prior to
compression. After decompression, the STREAM_VARIABLE bit in the stream media format attributes can be used to mimic
the original stream state.

Remaining Stream Size
The Remaining Stream Size field contains the uncompressed stream length in the first compression frame header. In
subsequent compression frame headers this field is computed by taking the remaining stream size field from the previous
compression frame header and subtracting the uncompressed size from the previous compression frame header. If the total
uncompressed stream length is unavailable, this field is set to zero.

Uncompressed Size
The Uncompressed Size field contains the total number of uncompressed bytes encapsulated by this compression frame header.

Compressed Size
The Compressed Size field contains the total number of compressed bytes encapsulated by this compression frame header.
Sometimes the size of compressed data is grater than that of the uncompressed data. In this case, the uncompressed data is
encapsulated by the compression frame header and not the compressed data and the compressed size is set to equal the
uncompressed size.

Sequence Number
The Sequence Number field starts with a value of 1 for the first compression frame header and is incremented in each
subsequent compression frame header. Because the Sequence Number field is 1 byte in size, the sequence number will wrap
every 256 frames.

Checksum
The Checksum field contains a word-wise XOR sum of all fields from Compression Header ID to the Checksum field. The two
byte Checksum field is not included in the checksum. This field is used to verify that a valid Compression Frame Header is
being processed during read operations.

6.5 Data Encryption
MTF supports the encryption of stream data with the exception of the Pad, Set Map, and File/Directory detail streams. When
compression is enabled, all DBLKs within a backup set have the MTF_ENCRYPTION bit set in the Block Attributes field of
the MTF_DB_HDR. Only one software encryption algorithm can be used per backup set.

To encrypt stream data, the Stream Header must have the STREAM_ENCRYPTED bit of the Stream Media Format field set
and the Data Encryption Algorithm field set. Once a Stream Header is set to indicate encryption is active, all stream data must
be encapsulated by Encryption Frame Headers.

When a stream is to be written with both data compression and data encryption, the data would be compressed first and then
encrypted. Therefore, when reading a stream that is compressed and encrypted, the data is decrypted first and then
decompressed.

Note: When stream data is both compressed and encrypted, the Compression Frame Headers are encrypted as if they were
stream data.

Data Streams

Copyright 1997 Seagate Software, Inc.
Page 72 10/1/98

6.5.1 Encryption Frame Header (MTF_ENC_HDR)
The Encryption Frame Header is used to encapsulate encrypted stream data and provides all information necessary for
decryption. It must also provide the total number of unencrypted data bytes from the current encryption frame header through
the end of the stream if available.

Offset Field Name Type Size

 0 00h Encryption Header ID UINT16 2 bytes

 2 02h Stream Media Format Attributes UINT16 2 bytes

 4 04h Remaining Stream Size UINT64 8 bytes

12 0Ch Unencrypted Size UINT32 4 bytes

16 10h Encrypted Size UINT32 4 bytes

20 15h Sequence Number UINT8 1 byte

21 16h reserved --- 1 byte

22 17h Checksum UINT16 2 bytes

Structure 25. Encryption Frame Header (MTF_ENC_HDR)

Encryption Header ID {2 bytes}
The Encryption Header ID field identifies this as the start of a encryption frame header. The encryption header ID field
contains a two character ASCII signature ‘EH’ (0x4845).

Stream Media Format Attributes
The Stream Media Format Attributes field contains the original stream media format attributes from the Stream Header prior to
encryption. After decryption, the STREAM_VARIABLE bit in the stream media format attributes can be used to mimic the
original stream state.

Remaining Stream Size
The Remaining Stream Size field contains the unencrypted stream length in the first encryption frame header. In subsequent
encryption frame headers this field is computed by taking the remaining stream size field from the previous encryption frame
header and subtracting the unencrypted size from the previous encryption frame header. If the total unencrypted stream length
is unavailable, this field is set to zero.

Unencrypted Size
The Unencrypted Size field contains the total number of unencrypted bytes encapsulated by this encryption frame header.

Encrypted Size
The Encrypted Size field contains the total number of encrypted bytes encapsulated by this encryption frame header.

Sequence Number
The Sequence Number field starts with a value of 1 for the first encryption frame header and is incremented in each subsequent
encryption frame header. Because the Sequence Number field is 1 byte in size, the sequence number will wrap every 256
frames.

Data Streams

Copyright 1997 Seagate Software, Inc.
9/15/00 Page 73

Checksum
The Checksum field contains a word-wise XOR sum of all fields from Encryption Header ID to the Checksum field. The two
byte Checksum field is not included in the checksum. This field is used to verify that a valid Compression Frame Header is
being processed during read operations.

Media Based Catalog

Copyright 1997 Seagate Software, Inc.
9/15/00 Page 75

7. Media Based Catalog
This section provides detailed information about Media Based Catalogs (MBC). A Media Based Catalog is comprised of two
parts. The first is a Set Map which contains cumulative information about each backup set in a Media Family. The second is a
File/Directory Detail which contains information specific to a backup set. Both the Set Map and File/Directory Detail are
stored as Data Streams associated with the MTF_ESET DBLK.

Two different implementations of the Media Based Catalog are defined in MTF Version 1.00a. The first is “Type 1” and the
second is “Type 2”. Either catalog type may be used but must be consistent within a Media Family. The type of MBC being
used must be defined in the Media Based Catalog Type field of the MTF_TAPE DBLK. The version of the particular catalog
type can be defined in the MBC Version field of the MTF_SSET DBLK.

7.1 Control Bits
Control bits within the MTF_DB_HDR attribute field of certain DBLKs are used to determine whether an attempt will be made
to write the FDD and Set Map for a given Data Set and Media Family. The table below describes the bits that are used and
their meanings. Please refer to the description of the MTF_DB_HDR for more information on the use of the attribute field.

Table 24. Media Based Catalog Control Bits

Bit Name Description Value

MTF_SET_MAP_EXISTS Set in the MTF_TAPE DBLK to indicate that Set Map streams
must be written after each Data Set in the Media Family.

BIT16

MTF_FDD_ALLOWED Set in the MTF_TAPE DBLK to indicate that FDD streams may
be written after each Data Set in the Media Family. This bit
being set does not require that the FDD be written for each
Data Set.

BIT17

MTF_FDD_EXISTS Set in the MTF_SSET DBLK to indicate that an FDD stream
will be written for that Data Set. If the FDD is not written the
MTF_FDD_ABORTED must be set in the MTF_ESET.

BIT16

MTF_NO_ESET_PBA Set in the MTF_EOTM if no Data Set ends on this media, and
therefore, no Set Map associated with MTF_ESET.

BIT16

MTF_INVALID_ESET_PBA Set in the MTF_EOTM if the PBA of the MTF_ESET is invalid
because the device doesn't support physical block addressing.

BIT17

Media Based Catalog

Copyright 1997 Seagate Software, Inc.
Page 76 10/1/98

7.2 Status Bits
Status bits within the MTF_DB_HDR attribute field of certain DBLKs are used to determine whether an attempt to write the
FDD and Set Map was successful. The table below describes the bits that are used and their meanings. Please refer to the
description of the MTF_DB_HDR for more information on the use of the attribute field.

Table 25. Media Based Catalog Status Bits

Bit Name Description Value

MTF_FDD_ABORTED Set in the second MTF_ESET to indicate that the FDD stream
was not written due to some error.

BIT16

MTF_END_OF_FAMILY Set in the second MTF_ESET to indicate that the Set Map
stream was not written due to some error. Note that this
implies that no further Data Sets may be appended to this
Media Family.

BIT17

Media Based Catalog

Copyright 1997 Seagate Software, Inc.
9/15/00 Page 77

7.3 Type 1 MBC
This section describes Type 1 MBC . An overview of Media Based Catalogs can be found in Section 3 - Format Description.
Type 1 MBC includes both File/Directory Detail (FDD) and Set Map. Both are Data Streams associated with the MTF_ESET
DBLK. The FDD includes entries for the MTF_VOLB, MTF_DIRB and MTF_FILE DBLKs in a given Data Set. Type 1
MBC is designed to allow entries for other DBLK types, including vendor specific types, to be included in the FDD in such a
way that any application which does not recognize a give entry can easily skip it. However, only the DBLKs mentioned above
are discussed here.

To create Type 1 MBC, the Media Based Catalog Type field of the MTF_TAPE DBLK is set to a value of 1 and the Media
Catalog Version field of the MTF_SSET DBLK is set to a value of 2.

7.3.1 Physical Layout
Both the Set Map and File/Directory Detail are written as data streams associated with the MTF_ESET, and aligned on
Physical Block boundaries to allow applications to seek to them directly. The FDD is written first, and the Set Map follows. It
is allowed to write both an FDD and Set Map stream, or only a Set Map stream for any given Data Set, but writing only an
FDD stream is not allowed. Note that the FDD can be added selectively on a per Data Set basis, but the Set Map must be
maintained for each Data Set as it is appended to the Media Family.

A second MTF_ESET DBLK is written following the Set Map stream on the next Physical Block boundary, and this is
followed by the second filemark which closes out the Data Set. The Physical Block Address (PBA) of the FDD and Set Map
are contained in two 8 byte fields in the second MTF_ESET DBLK. Another two byte field provides the media sequence
number where the FDD begins. Please refer to the MTF_ESET DBLK description for more information on these fields.

The last entry in the FDD is a special “end entry” which allows the total size of the FDD stream to be padded to insure the Set
Map stream begins on a Physical Block boundary. The gap between the end of the Set Map and the second MTF_ESET is
covered using a Pad Stream, as is the gap between the second MTF_ESET and the File Mark.

When a Media Family spans multiple media, the MTF_EOTM DBLK at the end of each full medium contains the PBA of the
second MTF_ESET associated with the last Data Set which was completed on that medium.

The first Reserved for MBC field of the second MTF_ESET is used to store the physical block address of the ‘TFDD’ Stream
Header. The second Reserved for MBC field of the second MTF_ESET is used to store the physical block address of the
‘TSMP’ Stream Header.

The following figure illustrates the physical positioning of the catalogs.

S
H

S
H

FDD
Data

Stream Alignment
to Physical Block

Stream Alignment
to Physical Block

TFDD
Stream Header

Set Map
Data

S
H Stream Data

4 byte Stream
Alignment

TSMP
Stream Header

SPAD
Stream Header

ESET
DBLK

File
Mark

File
Mark

ESET
DBLK

Figure 24. Physical layout of Type 1 MBC FDD and Set Map Streams

7.3.2 File/Directory Detail
The File/Directory Detail (FDD) is used to describe the volume, directory and file tree belonging to a particular Data Set. The
FDD can be used to quickly determine where individual volumes, directories and files are located on the media. The FDD can
be thought of as an abbreviated copy of the DBLKs in the Data Set without the data streams that follow. Only the information
necessary to locate and obtain important information about individual items in the Data Set is put into the FDD stream records
that describe each DBLK.

Media Based Catalog

Copyright 1997 Seagate Software, Inc.
Page 78 10/1/98

7.3.2.1 FDD Physical Layout
The FDD, like the Set Map, begins on a Physical Block boundary. The FDD is written as a stream with the Stream ID field
of the Stream Header is set to ‘TFDD’. Please refer to the Data Stream section for further information. The MTF Stream
Header identifies the stream as being the FDD and is followed by a series of FDD entries.

There are four types of FDD entries discussed here: MTF_FDD_VOLB, MTF_FDD_DIRB , MTF_FDD_FILE and
MTF_FDD_FEND. Each entry within the FDD begins with a common header (MTF_FDD_HDR), and is followed by
several fields of information. This is very similar to the way DBLKs use the MTF_DB_HDR at the beginning. Every FDD
entry has a corresponding DBLK structure in the Data Set. The number and order of the FDD entries in the FDD match the
order of the DBLKs in the Data Set which they represent, with the exception of “continuation” DBLKs written for spanning
situations. The final entry in the FDD is the FEND entry.

7.3.2.2 FDD Common Header
The File/Directory Detail Common Header is a 36 byte field placed at the beginning of every FDD entry. The FDD
Common Header consists of fields specifying the length of the entry, its type, the media it belongs to, and other pieces of
information that are often duplicates of the corresponding DBLK that the FDD entry corresponds to.

Offset Field Name Type Size

 0 0h LENGTH UINT16 2 bytes

 2 2h TYPE UINT8[4] 4 bytes

 6 6h MEDIA_SEQ_NUMBER UINT16 2 bytes

 8 8h COMMON_BLOCK_ATTRIBUTES UINT32 4 bytes

12 0Ch FORMAT_LOGICAL_ADDRESS UINT64 8 bytes

20 14h DISPLAYABLE_SIZE UINT64 8 bytes

28 1Ch LINK INT32 4 byte

32 20h OS_ID UINT8 1 byte

33 21h OS_VERSION UINT8 1 byte

34 22h STRING_TYPE UINT8 1 byte

35 23h PAD UINT8 1 byte

Structure 26. Type 1 MBC FDD Common Header (MTF_FDD_HDR)

LENGTH {2 bytes}
The LENGTH field indicates the size of this FDD record stream. This should equal the size of the corresponding
MTF_FDD_FILE, MTF_FDD_DIRB, MTF_FDD_VOLB, or MTF_FDD_FEND record stream plus the size of any
strings appended to the structure. Appended strings include names of machines, volumes, directories, and files that
follow the formal field structure of the specific FDD entry.

TYPE {4 bytes}
The TYPE field indicates which MTF_FDD record structure this header belongs to. The TYPE should be "VOLB",
"DIRB", "FILE", or "FEND." If the block is of type "FEND", the remaining fields in the block are undefined and
should be set to zero.

MEDIA_SEQ_NUMBER {2 bytes}
The MEDIA_SEQ_NUMBER identifies the media in the Media Family to which this FDD belongs.

Media Based Catalog

Copyright 1997 Seagate Software, Inc.
9/15/00 Page 79

COMMON_BLOCK_ATTRIBUTES {4 bytes}
The COMMON_BLOCK_ATTRIBUTES field should match the corresponding field in the MTF_DB_HDR of the
DBLK in the Data Set. Therefore, information about continuation, compression, end of media, variable length data
streams, etc. can be found from these attribute bits.

FORMAT LOGICAL ADDRESS {8 bytes}
The FORMAT LOGICAL ADDRESS field matches the corresponding field in the MTF_DB_HDR of the
corresponding DBLK in the Data Set. This value is used to locate the DBLK corresponding to this FDD Stream
entry.

DISPLAYABLE_SIZE {8 bytes}
The DISPLAYABLE_SIZE field matches the corresponding field in the MTF_DB_HDR of the DBLK represented by
this FDD entry. In this way, an application can quickly determine and display the size of all the files in a Data Set
simply by looking at this field in the FDD entries.

LINK {4 bytes}
The LINK field indicates the offset of another FDD entry from the beginning of the MTF_FDD_HDR structure. LINK
represents different offsets depending on which FDD entry it is being used in.

• File entries The stream offset of their parent directory.

• Volume entries The stream offset of the next volume entry, or zero for the last MTF_FDD_VOLB entry.

• Directory entries The stream offset of the next sibling directory (i.e. next directory having same parent), or
zero for the last sibling under any given parent.

OS_ID {1 byte}
The OS_ID field is another field that matches the corresponding field in the MTF_DB_HDR of the DBLK in the Data
Set.

OS_VERSION {1 byte}
The OS_VERSION field also matches the corresponding field in the MTF_DB_HDR of the DBLK in the Data Set.

STRING_TYPE {1 byte}
The STRING_TYPE field matches the corresponding field in the MTF_DB_HDR of the DBLK represented by this
FDD entry.

PAD {1 byte}
The PAD field is simply a one byte pad filled with zeroes to pad out to the next four byte stream alignment boundary
for improved performance on RISC processors using MTF. The remaining fields of the specific FDD entry begin on
this boundary.

7.3.2.3 FDD Entries
There are four record types used within the FDD. Three of them represent the volume, directory and file objects found
within the Data Set that this FDD describes. Many of the data fields in these FDD entries contain duplicate copies of data
found in the MTF_VOLB, MTF_DIRB and MTF_FILE DBLK fields. A fourth FDD entry called the FEND entry marks
the end of the FDD. The four FDD entry types are:

Table 26. Type 1 MBC FDD Entry Types

Name Description Value

MTF_FDD_VOLB FDD Volume Entry 'VOLB'

Media Based Catalog

Copyright 1997 Seagate Software, Inc.
Page 80 10/1/98

MTF_FDD_DIRB FDD Directory Entry 'DIRB'

MTF_FDD_FILE FDD File Entry ‘FILE’

MTF_FDD_FEND End of FDD Entry 'FEND'

7.3.2.3.1 FDD Volume Entry (MTF_FDD_VOLB)
The FDD Volume Entry corresponds with the VOLB DBLK it represents in the Data Set. Many of the data fields found in this
structure contain copies of the data found in the VOLB DBLK fields.

Offset Field Name Type Size

 0 0h FDD Common Header MTF_FDD_HDR 36 bytes

36 24h VOLB Attributes UINT32 4 bytes

40 28h Device Name MTF_TAPE_ADDRESS 4 bytes

44 2Ch Volume Name MTF_TAPE_ADDRESS 4 bytes

48 30h Machine Name MTF_TAPE_ADDRESS 4 bytes

52 34h OS_SPECIFIC_DATA MTF_TAPE_ADDRESS 4 bytes

57 38h Media Write Date MTF_DATE_TIME 5 bytes

Structure 27. Type 1 MBC FDD Volume Entry (MTF_FDD_VOLB)

FDD Common Header {36 bytes}
The FDD Common Header field contains the 36 byte MTF_FDD_HDR structure that is found at the beginning of
every FDD entry Stream. This structure was described on the preceding pages. The TYPE field within the
MTF_FDD_HDR structure will be set to ‘VOLB’.

VOLB Attributes {4 bytes}
The VOLB Attributes field is the same as that found in the corresponding MTF_VOLB DBLK in the Data Set. Refer
to the MTF_VOLB DBLK description for information on the bits in this field.

Device Name {4 bytes}
The Device Name field uses the four byte MTF_TAPE_ADDRESS low level structure. This field is the same as the
corresponding Device Name field in the MTF_VOLB DBLK of the Data Set, with one exception: The second two
bytes used for the Offset field is an offset from the start of this MTF_FDD_VOLB entry to the start of the string
containing the Device Name.

Volume Name {4 bytes}
The Volume Name field also uses the four byte MTF_TAPE_ADDRESS structure and is the same as the
corresponding Volume Name field in the MTF_VOLB DBLK. The Offset field in the MTF_TAPE_ADDRESS low
level structure is an offset from the start of this MTF_FDD_VOLB entry to the start of the string containing the
Volume Name.

Machine Name {4 bytes}
The Machine Name field also uses the four byte MTF_TAPE_ADDRESS structure and is the same as the Machine
Name field in the corresponding MTF_VOLB DBLK. The Offset field in the MTF_TAPE_ADDRESS structure is an
offset from the start of this MTF_FDD_VOLB entry to the start of the string containing the Machine Name.

Media Based Catalog

Copyright 1997 Seagate Software, Inc.
9/15/00 Page 81

OS_SPECIFIC_DATA {4 bytes}
The OS Specific Data field uses the four byte MTF_TAPE_ADDRESS structure. Its contents are either zero or the
same as the corresponding OS Specific Data field in the MTF_DB_HDR structure within the MTF_VOLB DBLK.
The Offset field contains the offset from the start of this MTF_FDD_VOLB entry to the string containing a copy of
the OS information used for the corresponding MTF_VOLB DBLK written to media.

Media Write Date {5 bytes}
The Media Write Date field uses the five byte MTF_DATE_TIME low level structure and is the same as the Media
Write Date field in the corresponding MTF_VOLB DBLK.

7.3.2.3.2 FDD Directory Entry (MTF_FDD_DIRB)
The FDD Directory Entry corresponds with the MTF_DIRB DBLK it represents in the Data Set. Many of the data fields found
in this structure contain copies of the data found in the MTF_DIRB DBLK fields.

Offset Field Name Type Size

 0 0h FDD Common Header MBC_GEN_HDR 36 bytes

36 24h Last Modification Date MTF_DATE_TIME 5 bytes

41 29h Creation Date MTF_DATE_TIME 5 bytes

46 2Eh Backup Date MTF_DATE_TIME 5 bytes

51 33h Last Access Date MTF_DATE_TIME 5 bytes

56 38h DIRB Attributes UINT32 4 bytes

60 3Ch Directory Name MTF_TAPE_ADDRESS 4 bytes

64 40h OS_SPECIFIC_DATA MTF_TAPE_ADDRESS 4 bytes

Structure 28. Type 1 MBC FDD Directory Entry (MTF_FDD_DIRB)

FDD Common Header {36 bytes}
The FDD Common Header field contains the 36 byte MTF_FDD_HDR structure that is found at the beginning of
every FDD entry Stream. This structure was described on the preceding pages. The TYPE field within the
MTF_FDD_HDR structure will be set to ‘DIRB’.

Last Modification Date {5 bytes}
The Last Modification Date field uses the five byte MTF_DATE_TIME structure and contains the same data as the
Last Modification Date field in the corresponding MTF_DIRB DBLK.

Creation Date {5 bytes}
The Creation Date field is another five byte field using the MTF_DATE_TIME low level structure. This field
contains the date and time when the directory was first created. The data contained here is the same as that found in
the corresponding MTF_DIRB DBLK.

Backup Date {5 bytes}
The Backup Date field is another five byte MTF_DATE_TIME field containing the date and time that the directory
was last backed up. This is the same value as that found in the corresponding MTF_DIRB DBLK in the Data Set.

Media Based Catalog

Copyright 1997 Seagate Software, Inc.
Page 82 10/1/98

Last Access Date {5 bytes}
The Last Access Date field also uses the five byte MTF_DATE_TIME low level structure describing the date and time
that the directory was last accessed. The data found here is a duplicate of the same field in the MTF_DIRB DBLK.

DIRB Attributes {4 bytes}
The DIRB Attributes field is four bytes in length organized as a 32-bit field. DIRB Attributes define characteristics of
the directory represented by this MTF_DIRB DBLK. This field is the same as that found in the corresponding
MTF_DIRB DBLK.

Directory Name {4 bytes}
The Directory Name field is four bytes in length using an MTF_TAPE_ADDRESS low level structure that specifies
the location and size of the name associated with this directory. The Offset field used in this structure specifies the
offset from the beginning of this MTF_FDD_DIRB entry to the beginning of the string containing the directory name.

OS_SPECIFIC_DATA {4 bytes}
The OS_SPECIFIC_DATA field uses the four byte MTF_TAPE_ADDRESS structure; its contents are either zero or a
copy of the data found in the corresponding field of the MTF_DB_HDR structure within the MTF_DIRB DBLK. The
Offset field contains the offset from the start of this MTF_FDD_DIRB entry to the string containing a copy of the OS
information used for the corresponding MTF_DIRB DBLK written to media.

7.3.2.3.3 FDD File Entry (MTF_FDD_FILE)
The FDD File Entry corresponds with the MTF_FILE DBLK it represents in the Data Set. Many of the data fields found in
this structure contain copies of the data found in the MTF_FILE DBLK fields.

Offset Field Name Type Size

 0 0h FDD Common Header MTF_FDD_HDR 36 bytes

36 24h Last Modification Date MTF_DATE_TIME 5 bytes

41 29h Creation Date MTF_DATE_TIME 5 bytes

46 2Eh Backup Date MTF_DATE_TIME 5 bytes

51 33h Last Access Date MTF_DATE_TIME 5 bytes

55 37h FILE Attributes UINT32 4 bytes

60 3Ch File Name MTF_TAPE_ADDRESS 4 bytes

64 40h OS_SPECIFIC_DATA MTF_TAPE_ADDRESS 4 bytes

Structure 29. Type 1 MBC FDD File Entry (MTF_FDD_FILE)

FDD Common Header {36 bytes}
The FDD Common Header field contains the 36 byte MTF_FDD_HDR structure that is found at the beginning of
every FDD entry Stream. This structure was described on the preceding pages. The TYPE field within the
MTF_FDD_HDR structure will be set to ‘FILE’.

Last Modification Date {5 bytes}
The Last Modification Date field uses the five byte MTF_DATE_TIME structure and contains the same data as the
Last Modification Date field in the corresponding MTF_FILE DBLK.

Media Based Catalog

Copyright 1997 Seagate Software, Inc.
9/15/00 Page 83

Creation Date {5 bytes}
The Creation Date field also uses the MTF_DATE_TIME low level structure containing the date and time the
directory was first created. The data contained here is a duplicate of the same field in the corresponding MTF_FILE
DBLK.

Backup Date {5 bytes}
The Backup Date field is an MTF_DATE_TIME low level structure containing the date and time that the directory
was last backed up. This is the same as the data found in the corresponding MTF_FILE DBLK.

Last Access Date {5 bytes}
The Last Access Date field is also a duplicate of the same field in the corresponding MTF_FILE DBLK.

FILE Attributes {4 bytes}
The FILE Attributes field is a 32-bit field containing the same data as found in the FILE Attributes field of the
corresponding MTF_FILE DBLK in the Data Set.

File Name {4 bytes}
The File Name field uses the four byte MTF_TAPE_ADDRESS low level structure that specifies the location and size
of the name associated with this file. The Offset field in this low level structure specifies the offset from the
beginning of this MTF_FDD_FILE entry to the string containing the file name.

OS_SPECIFIC_DATA {4 bytes}
The OS_SPECIFIC_DATA field uses the four byte MTF_TAPE_ADDRESS structure. Its contents are either zero or a
copy of the data found in the corresponding field of the MTF_DB_HDR structure within the MTF_FILE DBLK. The
Offset field contains the offset from the start of this MTF_FDD_FILE entry to the string containing a copy of the OS
information used for the corresponding MTF_FILE DBLK written to media.

7.3.2.3.4 End of FDD Entry (MTF_FDD_FEND)
The End of FDD Entry does not corresponds with a DBLK in the Data Set. It is used to indicate the end of the FDD.

Offset Field Name Type Size

 0 0h FDD Common Header MTF_FDD_HDR 36 bytes

Structure 30. Type 1 MBC FDD End Entry (MTF_FDD_FEND)

FDD Common Header {36 bytes}
The FDD Common Header field contains the 36 byte MTF_FDD_HDR structure that is found at the beginning of
every FDD entry Stream. This structure was described on the preceding pages. The TYPE field within the
MTF_FDD_HDR structure will be set to ‘FEND’.

The FEND entry is unique in that it does not correspond to a DBLK within the Data Set and does not have a record
specific section. It is used to indicate the end of the FDD entries. The space following the FEND entry is zero
padded up to the next Physical Block boundary. The Length field in the FDD Common Header specifies the offset to
the next PBA. Typically, the Set Map will begin at the start of the next Physical Block boundary.

Media Based Catalog

Copyright 1997 Seagate Software, Inc.
Page 84 10/1/98

7.3.3 Set Map
The Set Map is used to list all of the Data Sets of a media or Media Family. Each successive Set Map written to a media
contains information about the Data Sets previously written to media. The Set Map, like the FDD, is written as a stream and
can follow the FDD or be located on an alternate partition.

The Set Map is written as a stream with the Stream ID field of the Stream Header is set to ‘TSMP ’. Please refer to the Data
Stream section for information on the Stream Header. The Stream Header identifies the stream as being the Set Map stream
and is followed by three distinct parts.

1) Set Map Header

2) Set Map Entries

3) Volume Entries

7.3.3.1 Set Map Physical Layout
The Set Map begins with the Set Map Header which specifies the number of Set Map Entries which follow. Each Set Map
Entry is in turn followed by a number of Volume Entries as specified in the Set Map Entry. There is a one-to-one
correspondence between the number of Set Map Entries and Volume Entries in the Set Map, and the number of
MTF_SSET and MTF_VOLB DBLKs in the Media Family. This includes continuation MTF_SSET and MTF_VOLB
DBLKs written during EOM processing conditions. See Appendix J for details on End Of Media and spanning
information. The order in which the Set Map Entries and Volume Entries appear in the Set Map is identical to the order in
which their corresponding MTF_SSET and MTF_VOLB DBLKs are written to media.

7.3.3.2 Set Map Header (MTF_SM_HDR)
The Set Map Header is an eight byte header that contains information about the Media Family to which the Set Map
belongs, the number of Set Map Entries to follow, and a pad to the next stream alignment boundary.

Offset Field Name Type Size

 0 0h Media Family ID UINT32 4 bytes

 4 4h Number Of Set Map Entries UINT16 2 bytes

 6 6h Pad UINT8[2] 2 bytes

Structure 31. Type 1 MBC Set Map Header (MTF_SM_HDR)

Media Family ID {4 bytes}
The Media Family ID field corresponds to the same field specified in the MTF_TAPE DBLK for this media. Please
refer to the MTF_TAPE DBLK description for more information on this field.

Number Of Set Map Entries {2 bytes}
The Number Of Set Map Entries field is two bytes in length and tells how many Set Map Entry structures are to follow
this Set Map Header. One Set Map Entry is written for every Data Set written to the Media Family.

Pad {2 bytes}
The Pad field exists to maintain 32-bit alignment. The field should be initialized to zero.

7.3.3.3 Set Map Entry (MTF_SM_ENTRY)
The Set Map Entry corresponds with the MTF_SSET DBLK it represents in the Data Set. Many of the data fields found in
this structure contain copies of the data found in the MTF_TAPE, MTF_SSET and MTF_ESET DBLK fields.

Media Based Catalog

Copyright 1997 Seagate Software, Inc.
9/15/00 Page 85

Offset Field Name Type Size

 0 0h Length UINT16 2 bytes

 2 2h Media Sequence Number UINT16 2 bytes

 4 4h Common Block Attributes UINT32 4 bytes

 8 8h SSET Attributes UINT32 4 bytes

12 Ch SSET PBA UINT64 8 bytes

20 14h FDD PBA UINT64 8 bytes

28 1Ch FDD Media Sequence Number UINT16 2 bytes

30 1Eh Data Set Number UINT16 2 bytes

32 20h Format Logical Address UINT64 8 bytes

40 28h Number Of Directories UINT32 4 bytes

44 2Ch Number Of Files UINT32 4 bytes

48 30h Number Of Corrupt Files UINT32 4 bytes

52 34h Data Set Displayable Size UINT64 8 bytes

60 3Ch Number Of Volumes UINT16 2 bytes

62 3Eh Password Encryption Algorithm UINT16 2 bytes

64 40h Data Set Name MTF_TAPE_ADDRESS 4 bytes

68 44h Data Set Password MTF_TAPE_ADDRESS 4 bytes

72 48h Data Set Description MTF_TAPE_ADDRESS 4 bytes

76 4Ch User Name MTF_TAPE_ADDRESS 4 bytes

80 50h Media Write Date MTF_DATE_TIME 5 bytes

85 55h Time Zone INT8 1 byte

86 56h OS_ID UINT8 1 byte

87 57h OS_VERSION UINT8 1 byte

88 58h STRING_TYPE UINT8 1 byte

89 59h MTF Minor Version UINT8 1 byte

90 5Ah Media Catalog Version UINT8 1 byte

Structure 32. Type 1 MBC Set Map Entry (MTF_SM_ENTRY)

Length {2 bytes}
The Length is the size of the MTF_SM_ENTRY plus the size of any appended strings.

Media Sequence Number {2 bytes}
The Media Sequence Number field corresponds to the Media Sequence Number field in the MTF_TAPE DBLK to
which this Data Set belongs.

Media Based Catalog

Copyright 1997 Seagate Software, Inc.
Page 86 10/1/98

Common Block Attributes {4 bytes}
The Common Block Attributes field has the same organization as the field of the same name in the MTF_DB_HDR
structure.

SSET Attributes {4 bytes}
The SSET Attributes field is the same as the SSET Attributes field in the MTF_SSET DBLK.

SSET PBA {8 bytes}
The SSET PBA field corresponds to the Physical Block Address (PBA) field in the MTF_SSET DBLK and identifies
the PBA of the MTF_SSET DBLK.

FDD PBA {8 bytes}
The FDD PBA field contains the same information as the File/Directory Detail PBA field of the MTF_ESET DBLK.
This number specifies the Physical Block Address of the FDD associated with this Data Set.

FDD Media Sequence Number {2 bytes}
The FDD Media Sequence Number is a duplicate of the field of the same name in the MTF_ESET DBLK.

Data Set Number {2 bytes}
The Data Set Number field is a duplicate of the field of the same name in the MTF_SSET DBLK.

Number Of Directories {4 bytes}
The Number Of Directories field indicates the number of directories written as part of this Data Set.

Number Of Files {4 bytes}
The Number Of Files field indicates the number of files written as part of this Data Set.

Number Of Corrupt Files {4 bytes}
The Number Of Corrupt Files field indicates the number of corrupt files written as part of this Data Set.

Data Set Displayable Size {8 bytes}
The Data Set Displayable Size field indicates the cumulative size of the Data Set. This should be the sum of the
displayable size of every file in the Data Set.

Number Of Volumes {2 bytes}
The Number Of Volumes field should correspond with the number of MTF_ VOLB DBLKs in the Data Set and with
the number of Volume Entries that will follow this Set Map Entry (MTF_SM_ENTRY) structure.

Password Encryption Algorithm {2 bytes}
The Password Encryption Algorithm field is a duplicate of the field of the same name in the MTF_SSET DBLK.

Data Set Name {4 bytes}
The Data Set Name field is a duplicate of the field of the same name in the MTF_SSET DBLK.

Data Set Password {4 bytes}
The Data Set Password field is a duplicate of the field of the same name in the MTF_SSET DBLK.

Data Set Description {4 bytes}
The Data Set Description field is a duplicate of the field of the same name in the MTF_SSET DBLK.

Media Based Catalog

Copyright 1997 Seagate Software, Inc.
9/15/00 Page 87

User Name {4 bytes}
The User Name field is a duplicate of the field of the same name in the MTF_SSET DBLK.

Media Write Date {5 bytes}
The Media Write Date field is a duplicate of the field of the same name in the MTF_SSET DBLK.

Time Zone {1 bytes}
The Time Zone field is a duplicate of the field of the same name in the MTF_SSET DBLK.

OS_ID (1 byte}
The OS_ID field is a duplicate of the field of the same name in the MTF_DB_HDR structure of the MTF_SSET
DBLK.

OS_VERSION (1 byte}
The OS_VERSION field is a duplicate of the field of the same name in the MTF_DB_HDR structure of the
MTF_SSET DBLK.

STRING_TYPE (1 byte}
The STRING_TYPE field specifies the format of strings stored in the Set Map. Refer to the definition of this field in
the description of the MTF_DB_HDR structure.

MTF Minor Version {1 byte}
The MTF Minor Version field is a duplicate of the field of the same name in the MTF_SSET DBLK.

Media Catalog Version {1 byte}
The Media Catalog Version field is a duplicate of the field of the same name in the MTF_SSET DBLK.

Note: All strings associated with a Set Map Entry are appended immediately after, and pointed to by the
MTF_TAPE_ADDRESS entries. The Offset field within the MTF_TAPE_ADDRESS structure specifies
offsets from the start of this MTF_SM_ENTRY structure to the string being referred to.

7.3.3.4 Volume Entry
The Volume Entry structure in the Set Map is identical to the MTF_FDD_VOLB entry in the File/Directory Detail. Please
refer to the description of the MTF_FDD_VOLB earlier in this section.

7.3.3.5 End of Media Issues
It is possible to encounter EOM while writing MBC information to media. Refer to Appendix J for detailed information on
End Of Media processing and the way it is handled under different conditions.

Media Based Catalog

Copyright 1997 Seagate Software, Inc.
Page 88 10/1/98

7.4 Type 2 MBC
This section describes the Type 2 Media Based Catalog. The Type 2 Media Based Catalog includes both a Set Map and
File/Directory Detail (FDD). Both of these are implemented as fixed length data streams attached to the End Of Set
(MTF_ESET) DBLK.

FILE
MARK

ESET
DBLK Set Map FDD SPAD FILE

MARK

4 byte stream alignment
22 byte stream header (MAP2)

4 byte stream alignment

22 byte stream header (FDD2) PBA zPBA y

4 byte stream alignment
22 byte stream header (SPAD)

Figure 25. Physical layout of Type 2 MBC Set Map and FDD Streams

The MAP2 and FDD2 Stream Headers are aligned on the standard MTF stream header alignment of 4 bytes and the SPAD
data stream pads to the next physical block boundary. The first Reserved for MBC field of the MTF_ESET is used to store
the physical block address of the MTF_ESET.

To create Type 2 MBC, the Media Based Catalog Type field of the MTF_TAPE DBLK is set to a value of 2 and the Media
Catalog Version field of the MTF_SSET DBLK is set to a value of 1.

7.4.1 Set Map
The Set Map is written as a stream with the Stream ID field of the Stream Header is set to ‘MAP2’. The Stream Header
identifies the stream as being a Type 2 MBC Set Map and is followed by a series of DBLKs. A Type 2 Set Map is comprised
of MTF_TAPE, MTF_SSET, MTF_VOLB, and MTF_ESET DBLKs. All DBLKs are packed. The Offset To First Event field
of the MTF_DB_HDR is modified to point to the next DBLK in the data stream.

Stream DataESET
DBLK

S
H

MAP2
Stream Header

TAPE 1 SSET 1 VOLB 1 ESET 1 SSET 2 VOLB 2 TAPE 2 SSET 2* VOLB 2* ESET 2 SSET 3 VOLB 3 ESET 3

Offset to First Event

S
H

FDD2
Stream Header

4 byte Stream
Alignment

4 byte Stream
Alignment

(*) Continuation DBLKs

Figure 26. Type 2 MBC Set Map Example

Media Based Catalog

Copyright 1997 Seagate Software, Inc.
9/15/00 Page 89

7.4.2 File/Directory Detail
The FDD is written as a stream with the Stream ID field of the Stream Header is set to ‘FDD2’. The Stream Header identifies
the stream as being a Type 2 MBC FDD and is followed by a series of DBLKs. A Type 2 FDD is comprised of MTF_VOLB,
MTF_DIRB, MTF_FILE, and MTF_CFIL DBLKs. All DBLKs are packed. The Reserved for MBC and Offset To First Event
fields of the Common Block Header modified. The Reserved for MBC is used to indicate the media number that the DBLK
was written to and the Offset To First Event is used to point to the next DBLK in the FDD.

Stream DataS
H

FDD2
Stream Header

VOLB 3 DIRB A DIRB B DIRB C FILE 1 FILE 2 DIRB D FILE 3 FILE 4 FILE 5

Offset to First Event

S
H

4 byte Stream
Alignment

4 byte Stream
Alignment

ESET 3VOLB 3
Stream Data

SPAD
Stream Header

4 byte Stream
Alignment

Figure 27. Type 2 MBC FDD Example

7.4.3 End of Media Issues
It is possible to encounter EOM while writing MBC information to media. Refer to the section “End of Media Processing” for
detailed information on the way it is handled under different conditions.

When spanning from one media to the next, the set map is written as a data stream attached to the MTF_TAPE DBLK.

TAPE
DBLK Set Map FILE

MARK

4 byte stream alignment
22 byte stream header (MAP2)

Figure 28. Type 2 MBC Spanning

End Of Media Processing

Copyright 1997 Seagate Software, Inc.
9/15/00 Page 91

8. End Of Media Processing
This section is devoted to End Of Media (EOM) processing. The following diagram is an example of a 1.0 format Data Set
with marks at all unique points at which End Of Media (EOM) early warning may be detected. This is followed by diagrams
and brief explanations of what is written on the original and continuation media in each case.

... SSET
DBLK

a b

Before beginning the detailed explanation of how each case is handled, there are certain general concepts which need to be
explained.

What will be referred to as "normal EOM processing" consists of writing a filemark, an End Of Tape Marker (MTF_EOTM)
block and another filemark, getting a continuation tape and writing a tape header with the continuation bit set in its attribute
field followed by a filemark. Any exceptions to this process will be noted in the detail for that case.

While the only block shown to have associated data is the MTF_FILE, methods for handling data associated with any block
should be handled in a similar fashion. It is important to note that MTF_SSET, MTF_VOLB and MTF_DIRB blocks can be
repeated on the continuation tape, with the continuation bit set in its attribute field, even when they are not the current block
being processed. This is because they contain information which is necessary for reading and restoring data from the
continuation tape without the need for the tape where the data management operation was started. However, if they have any
associated data, it is not repeated, and the data size should be zero.

The split across EOM always occurs on Format Logical Block boundaries. For purposes of EOM processing, an image block
and data is treated the same as a MTF_FILE block and data.

NOTE: In all the diagrams that follow, '*' indicates that the continuation bit (MTF_CONTINUATION) is set in the Block
Attributes filed of the MTF_DB_HDR in the DBLK.

End Of Media Processing

Copyright 1997 Seagate Software, Inc.
Page 92 10/1/98

a) EOM after MTF_SSET - Process EOM normally, write the MTF_SSET again with the continuation bit set, and begin
writing again from the point you left off.

...

b) EOM after MTF_VOLB - Process EOM normally, write the MTF_SSET and the current MTF_VOLB again with the
continuation bit set in each, and begin writing again from the point you left off.

c) EOM after MTF_DIRB - Process EOM normally, write the MTF_SSET, and the current MTF_VOLB and
MTF_DIRB again with the continuation bit set in all three, and begin writing again from the point you left off.

End Of Media Processing

Copyright 1997 Seagate Software, Inc.
9/15/00 Page 93

d) EOM after MTF_FILE - Process EOM normally, and write the MTF_SSET, and the current MTF_VOLB and
MTF_DIRB again with the continuation bit set in all three. Write the MTF_FILE again with the continuation bit set,
then write the data associated with that MTF_FILE, and continue on. Note that the data is written immediately
following the MTF_FILE block, and since EOM always occurs at a Format Logical Block boundary, the chances of
EOM occurring at this point are very low.

e) EOM in mid MTF_FILE data - Process the EOM in the same manner as example d. Since the data was split at a
Format Logical Block boundary, and the pad at the end of the data is already calculated to align the next block on a
Format Logical Block boundary, the remaining data is written beginning at the next Format Logical Block boundary,
rather than flush against the end of the continuation MTF_FILE block.

End Of Media Processing

Copyright 1997 Seagate Software, Inc.
Page 94 10/1/98

f) EOM at end of MTF_FILE data - Unlike the MTF_SSET, MTF_VOLB and MTF_DIRB, the information in the
MTF_FILE block is not needed on the continuation tape if the MTF_FILE data is written completely. Therefore,
writing a continuation MTF_FILE DBLK is optional, and the continuation processing is done in the same manner as
example c. i.e. The continuation DBLKs are written, and then the write operation continues with the block that was
due to be written when EOM occurred.

g & h) EOM at End Of Set - In this case, all set information is on tape, but the MTF_EOTM is still written as if the set
continues on the next tape. Note that if the first filemark has been written, we do not write another. Only the
continuation MTF_SSET needs to be written before closing out the set normally, but it must also have the bit set to
indicate that the data for this set is contained fully on the previous tape.

End Of Media Processing

Copyright 1997 Seagate Software, Inc.
9/15/00 Page 95

i & j) EOM between sets - In these two cases, the MTF_ESET has already been written, and the set is completed, but we do
not want another set started on this tape. Therefore, we write an MTF_EOTM where the next MTF_SSET would be
expected, followed by a filemark. A continuation tape is written identical to the one written for cases g & h. This is
done to guarantee the existence of a unique continuation tape for beginning the next set. Note that while a
MTF_TAPE DBLK alone is sufficient to mark a unique continuation tape, information such as the number of the last
Data Set is necessary to append to the Media Family without requesting the previous tape.

EOM cases with Media Based Catalogs

The following diagram is an example of an MTF Version 1.00a format Data Set with Media Based Catalogs (MBC) showing
marks at all unique points at which EOM early warning may be detected. This is followed by diagrams and brief explanations
of what is written on the original and continuation tapes is each case. Note that the MBC lies between the two filemarks at the
end of the set, and all EOM cases outside of MBC are handled in the same manner as with tapes which do not have MBC as
specified above. Cases a, g, and h are shown below to relate this diagram to the non-MBC diagram above. Cases k - q are
specific to MBC and detailed below.

There are some further general concepts which need to be explained before detailing the MBC cases.

In all cases, the MTF_EOTM will contain the physical block address of the second MTF_ESET of the last set which finished
completely (including MBC) on the tape. Attribute bits will be defined to indicate whether the address field is invalid (not
supported by drive or no MBC on tape), and to indicate if no ending MTF_ESET exists on the tape (i.e. one set spans the entire
tape).

What will be referred to as "normal EOM processing" for MBC cases consists of writing a filemark, an End Of Tape Marker
(MTF_EOTM) block and another filemark, getting a continuation tape and writing a tape header with the continuation bit set in
its attribute field followed by a filemark, then writing the MTF_SSET with continuation bit set, another filemark, and finally
the starting MTF_ESET with continuation bit set. Any exceptions to this process will be noted in the detail for that case.
File/Directory Data will be referred to as FDD, and the Set Map as SM.

End Of Media Processing

Copyright 1997 Seagate Software, Inc.
Page 96 10/1/98

k) EOM after first MTF_ESET - Process EOM normally, then begin writing the FDD.

l) EOM in mid FDD - Process EOM normally, then continue writing the FDD.

End Of Media Processing

Copyright 1997 Seagate Software, Inc.
9/15/00 Page 97

m) EOM after FDD - Process EOM normally, then begin writing the SM.

n) EOM in mid Set Map - Process EOM normally. The Set Map is then rewritten from the start. The Set Map is never
split between tapes!

End Of Media Processing

Copyright 1997 Seagate Software, Inc.
Page 98 10/1/98

o) EOM after Set Map - This case is handled the same way as in case n. The goal here is to make the Set Map available
on the last tape in the Media Family. This makes the MBC processing a lot cleaner, and eliminates requiring the user
to switch back and forth between tapes when searching for the last Set Map in a Media Family.

p & q) EOM between sets - As in cases i and j, the MTF_ESET is already written before we hit EOM, and the set is
complete. So we write an MTF_EOTM where the next MTF_SSET would be expected, followed by a filemark.
However, we still want a copy of the Set Map on the last tape in the Media Family. Therefore, we write the
continuation tape in the same manner as case o.

Appendix A - Operating System Specific Data

Copyright 1997 Seagate Software, Inc.
9/15/00 Page 99

Appendix A Operating System Specific Data
The OS Specific Data field of the MTF_DB_HDR provides a storage location for Operating System Specific Information. The
OS ID and OS Version fields in the MTF_DB_HDR define the type of operating system specific data is stored in the OS
Specific Data field. These structures are defined for their respective platforms and use native data types. All structures must
be packet.

Operating System OS ID
Number

OS Version
Number

NetWare 1 0

NetWare SMS 13 1

2

Windows NT 14 0

DOS / Windows 3.X 24 0

OS/2 25 0

Windows 95 26 0

Macintosh 27 0

UNIX 28 0

To Be Assigned 33 - 127

Vendor Specific 128 - 255

Figure 29. OS ID and OS Version Matrix

OS ID values less than 128 may only be assigned by the MTF Review Committee. OS ID values 128-255 are reserved for
vendor specific use.

NetWare (OS ID Number 1, OS Version Number 1)
The following structures are defined for OS Specific Data for Novell NetWare. The OS ID field of the MTF_DB_HDR must
be set to a value of 1 and the OS Version field of the MTF_DB_HDR must be set to a value of 0.

Offset Content Type Size

 0 0h Owner ID UINT32 4 bytes

 4 4h Directory Attributes UINT32 4 bytes

 8 8h Maximum Space UINT32 4 bytes

12 Ch Inherited Rights UINT16 2 bytes

Structure 33. MTF_DIRB OS Specific Data for NetWare

Appendix A - Operating System Specific Data

Copyright 1997 Seagate Software, Inc.
Page 100 10/1/98

Offset Content Type Size

 0 0h Owner ID UINT32 4 bytes

 4 4h File Attributes UINT32 4 bytes

 8 8h Last Modifer ID UINT32 4 bytes

12 Ch Archiver ID UINT32 4 bytes

16 10h Inherited Rights UINT16 2 bytes

Structure 34. MTF_FILE OS Specific Data for NetWare

NetWare SMS (OS ID Number 13, OS Version Number 1)
The following structures are defined for OS Specific Data for Novell NetWare SMS. The OS ID field of the MTF_DB_HDR
must be set to a value of 13 and the OS Version field of the MTF_DB_HDR must be set to a value of 1.

Offset Content Type Size

 0 0h Directory Attributes UINT32 4 bytes

 4 4h Modified BOOLEAN 2 bytes

 6 6h Creator Name Space UINT32 4 bytes

10 Ah Volume UINT8 17 bytes

Structure 35. MTF_DIRB OS Specific Data for NetWare SMS (Version 1)

Offset Content Type Size

 0 0h File Attributes UINT32 4 bytes

 4 4h Modified BOOLEAN 2 bytes

 6 6h Creator Name Space UINT32 4 bytes

10 Ah Volume UINT8 17 bytes

Structure 36. MTF_FILE OS Specific Data for NetWare SMS (Version 1)

NetWare SME (OS ID Number 13, OS Version Number 2)
The following structures are defined for OS Specific Data for Novell NetWare SMS. The OS ID field of the MTF_DB_HDR
must be set to a value of 13 and the OS Version field of the MTF_DB_HDR must be set to a value of 2.

Offset Content Type Size

 0 0h Directory Attributes UINT32 4 bytes

 4 4h Creator Name Space UINT32 4 bytes

 8 8h Volume UINT8 18 bytes

26 1Ah Modified BOOLEAN 2 bytes

Appendix A - Operating System Specific Data

Copyright 1997 Seagate Software, Inc.
9/15/00 Page 101

Structure 37. MTF_DIRB OS Specific Data for NetWare SMS (Version 2)

Offset Content Type Size

 0 0h Directory Attributes UINT32 4 bytes

 4 4h Creator Name Space UINT32 4 bytes

 8 8h Volume UINT8 18 bytes

26 1Ah Modified BOOLEAN 2 bytes

Structure 38. MTF_FILE OS Specific Data for NetWare SMS (Version 2)

Windows NT (OS ID Number 14, OS Version Number 0)
The following structures are defined for OS Specific Data for Windows NT. The OS ID field of the MTF_DB_HDR must be
set to a value of 14 and the OS Version field of the MTF_DB_HDR must be set to a value of 0. The Directory and File
information are obtained from the WIN32_FIND_DATA structure.

Offset Content Type Size

 0 0h Directory Attributes UINT32 4 bytes

Structure 39. MTF_DIRB OS Specific Data for Windows NT

Offset Content Type Size

 0 0h File Attributes UINT32 4 bytes

 4 4h Short name offset UINT16 2 bytes

 6 6h Short name size UINT16 2 bytes

 6 8h If non-zero signifies that the file is a
link to a previously written file.

BOOLEAN 2 bytes

 8 Ah Reserved UINT16 2 bytes

Structure 40. MTF_FILE OS Specific Data for Windows NT

Windows NT (OS ID Number 14, OS Version Number 1)
The following structures are defined for OS Specific Data for Windows NT. The OS ID field of the MTF_DB_HDR must be
set to a value of 14 and the OS Version field of the MTF_DB_HDR must be set to a value of 1. The Directory and File
information are obtained from the WIN32_FIND_DATA structure.

Offset Content Type Size

 0 0h File System Flags
(lpFileSystemFlags parameter from
GetVolumeInformation API).

UINT32 4 bytes

Appendix A - Operating System Specific Data

Copyright 1997 Seagate Software, Inc.
Page 102 10/1/98

 4 4h NT Backup Set Attributes UINT32 4 bytes

Structure 41. MTF_VOLB OS Specific Data for Windows NT

NT Backup Set Attributes {4 bytes}
The NT Backup Set Attributes field is a four byte (32-bit) field specifying attributes that pertain to the NT volume. Bit
0 is defined below. Bits 1 - 23 are reserved for future use, and the most significant 8-bits (BIT24 - BIT31) are
reserved for vendor specific attributes.

Table 27. TAPE Attributes

Name Description Value

NT_VOLB_IS_DR_CANDIDATE If set, then the data following
the VOLB should be suitable
for an NT system recovery.

BIT0

Reserved (set to zero) BIT2 - BIT23

Vendor Specific BIT24 - BIT31

Offset Content Type Size

 0 0h Directory Attributes (dwFileAttributes
field of the WIN32_FIND_DATA
structure)

UINT32 4 bytes

 4 4h Short name offset UINT16 2 bytes

 6 6h Short name size UINT16 2 bytes

Structure 42. MTF_DIRB OS Specific Data for Windows NT

Offset Content Type Size

 0 0h File Attributes (dwFileAttributes field
of the WIN32_FIND_DATA
structure)

UINT32 4 bytes

 4 4h Short name offset UINT16 2 bytes

 6 6h Short name size UINT16 2 bytes

 8 8h NT File Flags (see) UINT32 4 bytes

Structure 43. MTF_FILE OS Specific Data for Windows NT

Appendix A - Operating System Specific Data

Copyright 1997 Seagate Software, Inc.
9/15/00 Page 103

Table 28. NT File Flags

Name Description Value

NT_FILE_LINK_FLAG_BIT This bit is set if the file is a posix
style hard link. If this bit is set, then
the data following the DBLK should
only contain one stream, this being
an STRM_NTFS_LINK (“LINK”)

BIT0

Reserved (set to zero). For
backwards compatibility, these bits
cannot be used.

BIT1 - BIT15

NT_FILE_POSIX_BIT This bit is set if the file is POSIX. BIT16

Reserved (set to zero) BIT17 - BIT23

Vendor Specific BIT24 - BIT31

DOS / Windows 3.X (OS ID Number 24, Version Number 0)
No structures are defined for DOS and Windows 3.X OS Specific Data. The OS ID field of the MTF_DB_HDR must be set to
a value of 24 and the OS Version field of the MTF_DB_HDR must be set to a value of 0.

OS/2 (OS ID Number 25, Version Number 0)
The following structures are defined for OS Specific Data for OS/2. The OS ID field of the MTF_DB_HDR must be set to a
value of 25 and the OS Version field of the MTF_DB_HDR must be set to a value of 0.

Offset Content Type Size

 0 0h Directory Attributes UINT32 4 bytes

Structure 49. MTF_DIRB OS Specific Data for OS/2

Offset Content Type Size

 0 0h File Attributes UINT32 4 bytes

Structure 50. MTF_FILE OS Specific Data for OS/2

Windows 95 (OS ID Number 26, Version Number 0)
The following structures are defined for OS Specific Data for Windows 95. The OS ID field of the MTF_DB_HDR must be
set to a value of 26 and the OS Version field of the MTF_DB_HDR must be set to a value of 0. The Directory and File
information are obtained from the WIN32_FIND_DATA structure.

Offset Content Type Size

 0 0h File Attributes UINT32 4 bytes

 4 4h Short name offset UINT16 2 bytes

Appendix A - Operating System Specific Data

Copyright 1997 Seagate Software, Inc.
Page 104 10/1/98

 6 6h Short name size UINT16 2 bytes

Structure 51. MTF_DIRB OS Specific Data for Windows 95

Offset Content Type Size

 0 0h File Attributes UINT32 4 bytes

 4 4h Short name offset UINT16 2 bytes

 6 6h Short name size UINT16 2 bytes

Structure 52. MTF_FILE OS Specific Data for Windows 95

Macintosh (OS ID Number 27, Version Number 0)
The following structures are defined for OS Specific Data for Macintosh. The OS ID field of the MTF_DB_HDR must be set
to a value of 27 and the OS Version field of the MTF_DB_HDR must be set to a value of 0. A MAC_UINTXX is used to
indicate 68XXX byte order.

Offset Content Type Size

 0 0h Volume Parms Attributes MAC_UINT32 4 bytes

 4 4h Volume Attributes MAC_UINT16 2 bytes

 6 6h Volume Signature MAC_UINT16 2 bytes

 8 8h Drive Number MAC_UINT16 2 bytes

10 Ah Driver Ref. Number MAC_UINT16 2 bytes

12 Ch File System ID MAC_UINT16 2 bytes

14 Eh Creator Data MTF_DATE_TIME 5 bytes

19 13h Modification Date MTF_DATE_TIME 5 bytes

24 18h Volume Finder Info MAC_UINT8 32 bytes

Structure 53. MTF_VOLB OS Specific Data for Macintosh

Offset Content Type Size

 0 0h Finder Info MAC_UINT8 16 bytes

16 10h Additional Finder Info MAC_UINT8 16 bytes

32 20h Directory ID MAC_UINT32 4 bytes

36 26h Directory Info MAC_UINT16 2 bytes

38 28h Directory X Info MAC_UINT8 1 bytes

39 29h Directory Attributes MAC_UINT8 1 bytes

Structure 54. MTF_DIRB OS Specific Data for Macintosh

Appendix A - Operating System Specific Data

Copyright 1997 Seagate Software, Inc.
9/15/00 Page 105

Offset Content Type Size

 0 0h Finder Info MAC_UINT8 16 bytes

16 10h Additional Finder Info MAC_UINT8 16 bytes

32 20h Directory ID MAC_UINT32 4 bytes

36 24h File Type MAC_UINT32 4 bytes

40 28h File Creator MAC_UINT32 4 bytes

44 2Ch File Info MAC_UINT16 2 bytes

46 2Eh File X Info MAC_UINT8 1 bytes

47 2Fh File Attributes MAC_UINT8 1 bytes

Structure 55. MTF_FILE OS Specific Data for Macintosh

UNIX (OS ID Number 28, Version Number 0)
(to be defined)

Appendix F - Data Compression

Copyright 1997 Seagate Software, Inc.
9/15/00 Page 107

Appendix B Password Encryption Algorithm

MTF currently defines a single password encryption algorithm based on the Message Digest 5 (MD5) algorithm as described
in RFC 1321. Password encryption can be done on the Media Password field of the MTF_TAPE DBLK and on the Data Set
Password field of the MTF_SSET DBLK.

Table 30. Password Encryption Algorithm Table

Name Description Value

MTF_MD5 Message Digest 5 5

Message Digest 5
The MD5 algorithm takes as input a message of arbitrary length and produces as output a 128-bit “fingerprint” or “message
digest” of the input. It is conjectured that it is computationally infeasible to produce two messages having the same message
digest, or to produce any message having a given prespecified target message digest. A copy of RFC 1321 can be obtained
from the world wide web or via email to “mtf@smg.seagate.com”.

Media Password
The Media Password field of the MTF_TAPE DBLK can be encrypted. To encrypt, the Password Encryption Algorithm field
of the MTF_TAPE DBLK is set to a value of 5 (MD5 encryption algorithm). The unencrypted password is given as input to
the MD5 algorithm which produces as output a 128-bit “message digest” of the password. The MD5 128-bit output is stored
in the Media Password field. The Password Encryption Algorithm field is set to a value of 0 if no password encryption is
used.

Note: If the Password Encryption Algorithm is unknown, no access to the media is allowed by software.

Data Set Password
The Data Set Password field of the MTF_SSET DBLK can be encrypted. To encrypt, the Password Encryption Algorithm
field of the MTF_SSET DBLK is set to a value of 5 (MD5 encryption algorithm). The unencrypted password is given as input
to the MD5 algorithm which produces as output a 128-bit “message digest” of the password. The MD5 128-bit output is
stored in the Data Set Password field. The Password Encryption Algorithm field is set to a value of 0 if no password
encryption is used.

Note: If the Password Encryption Algorithm is unknown, no access to the data set is allowed by software.

Appendix C - Data Compression Algorithm

Copyright 1997 Seagate Software, Inc.
9/15/00 Page 109

Appendix C Data Compression Algorithm

MTF currently defines a single data compression algorithm based on the Stac Technologies LZS221 compression libraries. The
definition of the LZS221 compression algorithm is intended to provide cross product tape interchange of software compressed
streams. It is assumed that a working knowledge of the LZS221 compression libraries is known.

Table 31. Data Compression Algorithm Table

Name Description Value

MTF_LZS221 Stac Technologies LZS221 0x0ABE

Common Block Header
All Common Block Headers in the Data Set are set to indicate possibility of compressed streams. The MTF_COMPRESSION
bit is set in the Block Attributes field and the Software Compression Algorithm field is set to the value of 0x0ABE.

Note: Compression cannot be used on End of Set (MTF_ESET) Data Streams.

Stream Header
To indicate the stream is compressed in the Stream Header, set the STREAM_COMPRESSED bit in the Stream Tape Format
Attributes field and set the Data Compression Algorithm field to the value of 0x0ABE. If the compressed stream is variable
length (STREAM_VARIABLE), all Stream Headers used to make up the variable length stream are set to indicate
compression is active. Once compression is active, all stream data must be encapsulated by Compression Frame Headers.

LZS221 Buffer Sizes
The size of the buffers used by the Compress and Decompress routines are provided in the table below.

Name Description Size

src Source buffer 62 * 1024

dst Destination buffer (62 * 1024) + 32

scratchRAM Scratch buffer used by LZS221.
This is defined in the LZS221
header file.

LZS_HISTORY_SIZE

Compress
The LZS221 compression library specifies a Compress API. Uncompressed data is passed in the src buffer and compressed
data is returned in the dst buffer. The following prototype is from the LZS221-86 compression library.

extern void OS2_API Compress(char **src,
char **dst,
unsigned long *srcCnt,
unsigned long *dstCnt,
char *scratchRAM);

Appendix C - Data Compression Algorithm

Copyright 1997 Seagate Software, Inc.
Page 110 10/1/98

Decompress
The LZS221 compression library specifies a Decompress API. Compressed data is passed in the src buffer and uncompressed
data is returned in the dst buffer. The following prototype is from the LZS221-86 compression library.

extern int OS2_API Decompress(char **src,
char **dst,
unsigned long *srcCnt,
unsigned long *dstCnt,
char *scratchRAM);

Compress and Decompress Pseudo Code
The following compress and decompress pseudo code integrates into the LZS221-86 compression library and is provided to
assist in development.

#define STAC_CODEC_ID 0x0ABE
#define STAC_INPUT_BUFFER_SIZE 1024 * 62
#define STAC_OUTPUT_BUFFER_SIZE (1024 * 62) + 32

m_pu8HistoryBuffer = new UINT8 [LZS_HISTORY_SIZE];
m_pu8InputBuffer = new UINT8 [STAC_INPUT_BUFFER_SIZE];
m_pu8OutputBuffer = new UINT8 [STAC_OUTPUT_BUFFER_SIZE];

Appendix C - Data Compression Algorithm

Copyright 1997 Seagate Software, Inc.
9/15/00 Page 111

//___
//
// function: StacLZS211::TryCompressing
//
// description: pass in uncompressed data and compress it. if the compressed data is smaller
// than the uncompressed data, the compressed data is returned. if the compressed
// data is larger than the uncompressed data, the uncompressed data is returned.
//
// entry: the Uncompressed Size field of the Compression Frame Header is set to
// psParam->u32RawDataSize.
//
// psParam->pu8RawData points to the buffer containing the uncompressed
// data.
// psParam->u32RawDataSize contains the size of the uncompressed data.
// psParam->pu8CompressedData undefined
// psParam->u32CompressedDataSize undefined
//
// exit: the Compressed Size field of the Compression Frame Header is set from
// psParam->u32CompressedDataSize and the data pointed to by
// psParam->pu8CompressedData is written to tape.
//___

void StacLZS211::TryCompressing (CODEC_PARAM * psParam)
{
 BOOL fUseCompressedData;
 UINT32 u32OutputBytesUsed;
 UINT8 * pu8InputBuffer = psParam->pu8RawData;
 UINT32 u32InputCount = psParam->u32RawDataSize;
 UINT8 * pu8OutputBuffer = m_pu8OutputBuffer; // local dst buffer
 UINT32 u32OutputCount = STAC_OUTPUT_BUFFER_SIZE

 // call into the LZS221 compression libray to compress the data
 Compress ((char **) &pu8InputBuffer, // src
 (char **) &pu8OutputBuffer, // dst
 (unsigned long *) &u32InputCount, // srcCnt (max size of STAC_INPUT_BUFFER_SIZE)
 (unsigned long *) &u32OutputCount, // dstCnt
 (char *) m_pu8HistoryBuffer);// scratchRAM

 if (u32OutputCount == 0)
 {
 // the compressed data is larger than the uncompressed data
 fUseCompressedData = FALSE;
 }
 else
 {
 // flush the compression buffer. the output count must be set to
 // zero and the Compress API called again.
 u32OutputCount = 0;
 Compress ((char **) &pu8InputBuffer, // src
 (char **) &pu8OutputBuffer, // dst
 (unsigned long *) &u32InputCount, // srcCnt
 (unsigned long *) &u32OutputCount, // dstCnt
 (char *) m_pu8HistoryBuffer);// scratchRAM

 // determine the number of compressed bytes in the output buffer
 u32OutputBytesUsed = pu8OutputBuffer - m_pu8OutputBuffer;

 // check to see if the compressed data is smaller than the uncompressed
 fUseCompressedData = (u32OutputBytesUsed < psParam->u32RawDataSize);
 }

 if (fUseCompressedData)
 {
 // the compressed data is smaller that the uncompressed
 psParam->pu8CompressedData = m_pu8OutputBuffer;
 psParam->u32CompressedDataSize = u32OutputBytesUsed;
 }
 else
 {
 // the uncompressed data is smaller that the compressed data
 psParam->pu8CompressedData = psParam->pu8RawData;
 psParam->u32CompressedDataSize = psParam->u32RawDataSize;
 }
}

Appendix C - Data Compression Algorithm

Copyright 1997 Seagate Software, Inc.
Page 112 10/1/98

//___
//
// function: StacLZS211::TryDecompress
//
// description: pass in compressed data and decompress it. the uncompressed data is returned if
// no error condition.
//
// entry: psParam->pu8RawData undefined
// psParam->u32RawDataSize undefined
// psParam->pu8CompressedData points to the buffer containing all compressed
// data for this frame.
// psParam->u32CompressedDataSize contains the size of the compressed data from the
// Compressed Size field of the Compression Frame
// Header.
//
// exit: if SUCCESSFUL
// psParam->pu8RawData points to a buffer containing the uncompressed
// data.
// psParam->u32RawDataSize contains to size of the uncompressed data in the
// buffer pointed to by psParam->pu8RawData. this
// must match the Uncompressed Size field of the
// Compression Frame Header.
//
// if CODEC_ERR_COULD_NOT_DECOMPRESS
// psParam->pu8RawData undefined
// psParam->u32RawDataSize undefined
//___

int StacLZS211::TryDecompress (CODEC_PARAM * psParam)
{
 int iRetVal;
 UINT8 * pu8InputBuffer = psParam->pu8CompressedData;
 UINT32 u32InputCount = psParam->u32CompressedDataSize;
 UINT8 * pu8OutputBuffer = m_pu8OutputBuffer;
 UINT32 u32OutputCount = STAC_OUTPUT_BUFFER_SIZE;

 iRetVal = Decompress ((char **) &pu8InputBuffer, // src
 (char **) &pu8OutputBuffer, // dst
 (unsigned long *) &u32InputCount, // srcCnt
 (unsigned long *) &u32OutputCount, // dstCnt
 (char *) m_pu8HistoryBuffer);// scratchRAM

 if (iRetVal != 0)
 {
 // if the return value from Decompress is non-zero then flush the decompressor
 u32InputCount = 0;
 iRetVal = Decompress ((char **) &pu8InputBuffer, // src
 (char **) &pu8OutputBuffer, // dst
 (unsigned long *) &u32InputCount, // srcCnt
 (unsigned long *) &u32OutputCount, // dstCnt
 (char *) m_pu8HistoryBuffer);// scratchRAM
 }

 if (iRetVal == 0)
 {
 // the data was successfully decompressed
 psParam->pu8RawData = m_pu8OutputBuffer;
 psParam->u32RawDataSize = STAC_OUTPUT_BUFFER_SIZE - u32OutputCount;

 // consistency check
 if (psParam->u32RawDataSize <= STAC_INPUT_BUFFER_SIZE)
 return SUCCESSFUL;
 }

 return CODEC_ERR_COULD_NOT_DECOMPRESS;
}

Appendix E - Optical Media Framework

Copyright 1997 Seagate Software, Inc.
9/15/00 Page 113

Appendix D Implementation Issues

Field Size and Alignment
Due to the nature of many of the 32-bit processors, all 32-bit elements are aligned on 4 byte boundaries, and all 16-bit elements
are aligned on even byte boundaries. Without this requirement, the actual size of the structure would vary depending on the
type of processor and the compiler. All media structures are packed to 1 byte boundaries to ensure compatibility.

Software Compression Algorithm
The Data Encryption Algorithm in the MTF_SSET DBLK has been changed to Software Compression Algorithm. MTF
Version 1.00a limits a backup set to a single software compression algorithm. The addition of the Software Compression
Algorithm allows software to determine if Data Sets have compatible software compression algorithms. Data Encryption has
not been defined and this change should have no impact on existing products.

Block Alignment Pad
In Version 1.0 of MTF, a Block Alignment Pad is used between the end of a DBLK and the start of the next DBLK. The Block
Alignment Pad can be a few bytes or hundreds of bytes depending on the length necessary to fill to the next Format Logical
Block. A block alignment pad has no header, it is simply NULL data (binary zero). Block Alignment Pads are only used
following DBLKs which don’t have a data stream section immediately following. MTF Version 1.00a uses a stream pad
(SPAD) in place of the Block Alignment Pad.

Offset To First Event
The Offset To First Event field in the Common Block Header normally points to the header of the first stream associated with
that DBLK. Early drafts of the MTF 1.0 specification did not require the SPAD Data Stream. The following method is
suggested for determining whether the Offset To First Event field points to is a Stream Header or DBLK:

1. Check to see if it is a known DBLK or Stream type, then use the checksum to verify the integrity of the data.
2. If step 1 fails use the checksum to determine if it is an unknown Stream Header.
3. If step 2 fails use the checksum to determine if it is an unknown DBLK.

Device Specific Physical Block Addressing
There are two types of positioning: absolute (physical) and logical. Not all drives support both types of positioning: the drive's
feature bits indicate the type(s) supported. Also, on some drives, the media (tape) can affect whether or not positioning is
supported; i.e., a drive's feature bits can change depending on whether or not there is media in the drive and/or the type of
media in the drive.

Some Windows NT tape (class) drivers do a software simulation of logical tape positioning in the driver; i.e., they implement
pseudo-logical tape positioning. This provides a means to write/read MTF on media and drives that intrinsically support only
absolute tape positioning.

On all drives, positioning support is intended to provide a means to do a "get position" while writing to tape in order to be able
to later do a "set position" to that same position and then begin reading the tape at/from that same position. This technique will
always "work" and it can be done on any media and drive that supports either type of positioning; i.e., it is always possible to
"set position" to either an absolute position or a logical position obtained by means of a "get position". It is not certain that a
"set position" to a "synthetic" position (i.e., any position not directly obtained by means of a "get position") will "work".
Arbitrary, "random access" positioning capability on tape is not intended; in fact, it is not supported by/on many drives.

However, it is usually possible to "set position" to a position relative to (i.e., at an offset from) a logical position (pseudo or
real) obtained by means of a "get position". On all media and drives where logical positioning is supported, this relative
(offset) type of "set positioning" can at least be done:

in a forward direction (positive offset),

from the logical position obtained by means of a "get position",

Appendix C - Data Compression Algorithm

Copyright 1997 Seagate Software, Inc.
Page 114 10/1/98

to/at any relative, calculated position (sum of offset and logical position obtained by means of a "get position"),

within and throughout the/any region of data that is/was consecutively and contiguously written immediately following
the logical position obtained by means of a "get position" (i.e., a data "zone" produced by consecutive and contiguous
"writes" and nothing else -- no other intermediate tape mark writes, "get positions", or whatever).

The foregoing is true both on media and drives that intrinsically support true (SCSI-2) logical positioning and on media and
drives where (driver implemented) pseudo-logical positioning is supported.

In addition to the foregoing, on media and drives that intrinsically support true logical positioning it is possible to do both
forward and reverse relative "set positions" (negative or positive offset) and relative "set positions" that cross tape mark
divisions (filemarks and/or setmarks).

In the set of tape media and tape drives handled by the current set of Windows NT tape drivers (4mmdat.sys, archqic.sys,
exabyte1.sys, exabyte2.sys, tandqic.sys, wangqic.sys, and qic117.sys), the media and drives that intrinsically support true
(SCSI-2) logical positioning are all DAT media and drives (4mmdat.sys), the 1.35 gigabyte (9135) and 2.1 gigabyte (9210)
QIC media and Archive Anaconda (model 2750 and model 2800) QIC drives (archqic.sys), and 5+ gigabyte 8mm media and
SCSI-2 8mm drives (exabyte2.sys -- Exabyte 8500 series and compatible). In all other cases where logical positioning support
is indicated in the drive features bits, it is pseudo-logical tape positioning support; i.e., it is done by software simulation of
logical tape positioning in the driver.

Thus, although it is sometimes possible to "set position" to a position relative to (i.e., at an offset from) an absolute position
obtained by means of a "get position", it is unnecessary to do so: pseudo-logical tape positioning is implemented in the
Windows NT tape drivers where it is possible to do so. Doing so is very media/drive unique and hence requires very
media/drive specific knowledge. An understanding of how this is accomplished can be acquired by studying the technical
standards that govern the physical format of recorded information on the specific tape media, the tape drive technical manual(s)
and the Windows NT tape driver source code. Translation between absolute position and pseudo-logical position and vice versa
is accomplished by module "physlogi" in the Windows NT tape drivers. The source code for this module (physlogi.c) is
included in the Windows NT DDK.

Appendix E - Optical Media Framework

Copyright 1997 Seagate Software, Inc.
9/15/00 Page 115

Appendix E Optical Media Framework
This appendix defines a framework for writing MTF data to an optical media This framework was defined and implemented
by Seagate Software Inc. prior to the definition of the Soft Filemark Descriptor Block (MTF_SFMB DBLK).

In this framework, the optical media is viewed as a liner media. The media is divided into three parts. First is the Optical
Media Header which occupies a single sector and is located at Logical Sector Address (LSA) 0x0606, the second is the Optical
Data Area which starts in the next available sector after the Optical Media Header and grows towards the Optical Filemark
Tables, and the third is the Optical Filemark Tables, the first of which is located at the end of the media with additional Optical
Filemark Tables being added towards the Optical Data Area.

Optical
Media Header

Optical
Data Area

Optical
Filemark Table

LSA0x606 LSA0x607 LSA0x608 LSA0x609 LSAnLSAn-1LSAn-2

Optical Filemark TableOptical Data Area

Figure 30. Optical Media Framework

Note: As the Optical Data Area and Optical Filemark Tables grow towards each other, enough space must be reserved for end
of media processing.

Optical Media Header
The Optical Media Header contains signature information, starting sector of the Optical Data Area, and the starting sector of
the first Optical Filemark Table.

Offset Field Name Type Size

 0 0h Optical Signature UINT8 [20] 21 bytes

21 15h Optical Format UINT8 [8] 9 bytes

30 1Eh Volume Serial Number UINT32 4 bytes

34 22h Sector Size UINT32 4 bytes

38 26h Starting Data Sector UINT32 4 bytes

42 2Ah Starting Filemark Sector UINT32 4 bytes

Structure 56. Optical Media Header

Optical Signature {21 bytes}
The Optical Signature field is a 21 byte character signature used to identify this as the Optical Media Header. The
signature is set to the NULL terminated string “Arcada Software Inc.”.

Optical Format {9 bytes}
The Optical Format field is a 9 byte field containing a character sequence that identifies the version of the Optical
Media Framework being used. This field is set to the NULL terminated string “OTEF 1.0”.

Appendix E - Optical Media Framework

Copyright 1997 Seagate Software, Inc.
Page 116 10/1/98

Volume Serial Number {4 bytes}
The Volume Serial Number is a 4 byte field that contains the volume serial number of this optical media.

Sector Size {4 bytes}
The Sector Size field is a 4 byte field that contains the size of a sector on this optical media.

Starting Data Sector {4 bytes}
The Starting Data Sector field is a 4 byte field that contains the LSA that the Optical Data Area starts.

Starting Filemark Table Sector {4 bytes}
The Starting Filemark Table Sector field is a 4 byte field that contains the LSA of the first Optical Filemark Table.
Additional Optical Filemark Tables are added in adjacent sectors growing towards the Optical Data Area.

Optical
Media Header

Optical
Data Area

2nd Optical
Filemark Table

1s t Optical
Filemark Table

LSA0x606 LSA0x607 LSA0x608 LSA0x609 LSAnLSAn-1LSAn-2

Optical Filemark TableOptical Data Area

Starting Filemark
Table Sector

Figure 31. Multiple Optical Filemark Tables

Optical Filemark Table
The Optical Filemark Table contains the end of data sector, number of filemarks in the array, sector number of the previous
filemark table, and an array of filemarks.

Offset Field Name Type Size

 0 00h Optical Table ID UINT32 4 bytes

 4 04h End Of Data Sector UINT32 4 bytes

 8 08h Number Of Filemark Entries UINT32 4 bytes

12 0Ch Last Entry In Previous Filemark Table UINT32 4 bytes

16 10h Filemark Array UINT32 sector size - 16

Structure 57. Optical Filemark Table

Optical Table ID {4 bytes}
The Optical Table ID field is a 4 byte character signature used to identify this as a Optical Filemark Table. This field
is set to ‘OTEF’. This is not a NULL terminated string.

End Of Data Sector {4 bytes}
The End Of Data Sector field is 4 bytes in size and contains the EOD LSA. The EOD LSA is the first free sector that
can be used to grow the Optical Data Area. The End Of Data Sector field is only valid for the most recent Optical
Filemark Table.

Appendix E - Optical Media Framework

Copyright 1997 Seagate Software, Inc.
9/15/00 Page 117

Number Of Filemark Entries {4 bytes}
The Number Of Filemark Entries field is 4 bytes in size and contains the number of filemark entries in the Filemark
Array.

Last Entry In Previous Filemark Table {4 bytes}
The Last Entry In Previous Filemark Table field is 4 bytes in size and contains the LSA of the last entry in the
previous Optical Filemark Table.

Filemark Array {4 bytes}
The Filemark Array field is an array of filemark elements. Each filemark element is a 4 byte LSA. Filemarks occupy
one physical sector of undefined data. If a entry in the array is not used, it is set to a value of zero.

